Do you want to publish a course? Click here

Optimization of mixing strategy in microalgal raceway ponds

51   0   0.0 ( 0 )
 Added by Liu-Di Lu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

This paper focuses on mixing strategies to enhance the growth rate in an algal raceway system. A mixing device, such as a paddle wheel, is considered to control the rearrangement of the depth of the algae cultures hence the light perceived at each lap. The dynamics of the photosystems after a rearrangement is accounted for by the Han model. Our approach consists in considering permanent regimes where the strategy is parametrized by a permutation matrix which modifies the order of the layers at the beginning of each lap. It is proven that the dynamics of the photosystems is then periodic, with a period corresponding to one lap of the raceway whatever the order of the considered permutation matrix is. An objective function related to the average growth rate over one lap is then introduced. Since N ! permutations (N being the number of considered layers) need to be tested in the general case, it can be numerically solved only for a limited number of layers. Consequently, we propose a second optimization problem associated with a suboptimal solution of the initial problem, which can be determined explicitly. A sufficient condition to characterize cases where the two problems have the same solution is given. Some numerical experiments are performed to assess the benefit of optimal strategies in various settings.



rate research

Read More

96 - Olivier Bernard , ANGE 2020
We consider a coupled physical-biological model describing growth of microalgae in a raceway pond cultivation process, accounting for hydrodynamics. Our approach combines a biological model (based on the Han model) and shallow water dynamics equations that model the fluid into the raceway pond. We present an optimization procedure dealing with the topography to maximize the biomass production over one lap or multiple laps with a paddle wheel. On the contrary to a widespread belief in the microalgae field, the results show that a flat topography is optimal in a periodic regime. In other frameworks, non-trivial topographies can be obtained. We present some of them, e.g., when a mixing device is included in the model.
50 - Olivier Bernard , ANGE 2020
This paper focuses on mixing strategies to enhance the growth of microalgae in a raceway pond. The flow is assumed to be laminar and the Han model describing the dynamics of the photosystems is used as a basis to determine growth rate as a function of light history. A device controlling the mixing is assumed, which means that the order of the cells along the different layers can be rearranged at each new lap according to a permutation matrix P. The order of cell depth hence the light perceived is consequently modified on a cyclical basis. The dynamics of the photosystems are computed over K laps of the raceway with permutation P. It is proven that if a periodic regime is reached, it will be periodic immediately after the first lap, which enables to reduce significantly the computational cost when testing all the permutations. In view of optimizing the production, a functional corresponding to the average growth rate along depth and for one lap is introduced. A suboptimal but explicit solution is proposed and compared numerically to the optimal permutation and other strategies for different cases. Finally, the expected gains in growth rate are discussed.
The potential of industrial applications for microalgae has motivated their recent fast development. Their growth dynamics depends on different factors that must be optimized. Since they get their energy from photosynthesis, light is a key factor that strongly influences their productivity. Light is absorbed and scattered in the liquid medium, and irradiance exponentially decreases towards the darkest part of the photobioreactor at a rate nonlinearly depending on the biomass concentration. Maximizing productivity is then a tricky problem, especially when the growth rate is inhibited by an excess of light. Productivity optimization turns out to be highly dependent on how light is distributed along the reactor, and is therefore related to the extinction rate and the background turbidity. The concept of optical depth productivity is introduced for systems where background turbidity must be accounted for and a global optimum maximizing productivity is proposed, extending the concept of the compensation condition. This optimal condition consists in compensating the algal growth rate at the bottom of the reactor by the respiration. This condition can drive the optimization of the surface biomass productivity depending on the minimum reachable depth. We develop a nonlinear controller and prove the global asymptotic stability of the biomass concentration towards the desired optimal value.
This paper focuses on mixing strategies and designing shape of the bottom topographies to enhance the growth of the microalgae in raceway ponds. A physical-biological coupled model is used to describe the growth of the algae. A simple model of a mixing device such as a paddle wheel is also considered. The complete process model was then included in an optimization problem associated with the maximization of the biomass production. The results show that non-trivial topographies can be coupled with some specific mixing strategies to improve the microalgal productivity.
Many problems in engineering can be understood as controlling the bifurcation structure of a given device. For example, one may wish to delay the onset of instability, or bring forward a bifurcation to enable rapid switching between states. We propose a numerical technique for controlling the bifurcation diagram of a nonlinear partial differential equation by varying the shape of the domain. Specifically, we are able to delay or advance a given bifurcation point to a given parameter value, often to within machine precision. The algorithm consists of solving a shape optimization problem constrained by an augmented system of equations, the Moore--Spence system, that characterize the location of the bifurcation points. Numerical experiments on the Allen--Cahn, Navier--Stokes, and hyperelasticity equations demonstrate the effectiveness of this technique in a wide range of settings.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا