Do you want to publish a course? Click here

A Computational Study of Perspective Cuts

88   0   0.0 ( 0 )
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

The benefits of cutting planes based on the perspective function are well known for many specific classes of mixed-integer nonlinear programs with on/off structures. However, we are not aware of any empirical studies that evaluate their applicability and computational impact over large, heterogeneous test sets in general-purpose solvers. This paper provides a detailed computational study of perspective cuts within a linear programming based branch-and-cut solver for general mixed-integer nonlinear programs. Within this study, we extend the applicability of perspective cuts from convex to nonconvex nonlinearities. This generalization is achieved by applying a perspective strengthening to valid linear inequalities which separate solutions of linear relaxations. The resulting method can be applied to any constraint where all variables appearing in nonlinear terms are semi-continuous and depend on at least one common indicator variable. Our computational experiments show that adding perspective cuts for convex constraints yields a consistent improvement of performance, and adding perspective cuts for nonconvex constraints reduces branch-and-bound tree sizes and strengthens the root node relaxation, but has no significant impact on the overall mean time.



rate research

Read More

In the past few decades, artificial intelligence (AI) technology has experienced swift developments, changing everyones daily life and profoundly altering the course of human society. The intention of developing AI is to benefit humans, by reducing human labor, bringing everyday convenience to human lives, and promoting social good. However, recent research and AI applications show that AI can cause unintentional harm to humans, such as making unreliable decisions in safety-critical scenarios or undermining fairness by inadvertently discriminating against one group. Thus, trustworthy AI has attracted immense attention recently, which requires careful consideration to avoid the adverse effects that AI may bring to humans, so that humans can fully trust and live in harmony with AI technologies. Recent years have witnessed a tremendous amount of research on trustworthy AI. In this survey, we present a comprehensive survey of trustworthy AI from a computational perspective, to help readers understand the latest technologies for achieving trustworthy AI. Trustworthy AI is a large and complex area, involving various dimensions. In this work, we focus on six of the most crucial dimensions in achieving trustworthy AI: (i) Safety & Robustness, (ii) Non-discrimination & Fairness, (iii) Explainability, (iv) Privacy, (v) Accountability & Auditability, and (vi) Environmental Well-Being. For each dimension, we review the recent related technologies according to a taxonomy and summarize their applications in real-world systems. We also discuss the accordant and conflicting interactions among different dimensions and discuss potential aspects for trustworthy AI to investigate in the future.
The generalized intersection cut (GIC) paradigm is a recent framework for generating cutting planes in mixed integer programming with attractive theoretical properties. We investigate this computationally unexplored paradigm and observe that a key hyperplane activation procedure embedded in it is not computationally viable. To overcome this issue, we develop a novel replacement to this procedure called partial hyperplane activation (PHA), introduce a variant of PHA based on a notion of hyperplane tilting, and prove the validity of both algorithms. We propose several implementation strategies and parameter choices for our PHA algorithms and provide supporting theoretical results. We computationally evaluate these ideas in the COIN-OR framework on MIPLIB instances. Our findings shed light on the the strengths of the PHA approach as well as suggest properties related to strong cuts that can be targeted in the future.
Crowd-shipping is a promising shared mobility service that involves the delivery of goods using non-professional shippers. This service is mainly intended to reduce congestion and pollution in city centers but, as some authors observe, in most crowd-shipping initiatives the crowd rely on private motorized vehicles and hence the environmental benefits could be small, if not negative. Conversely, a crowd-shipping service relying on public transport should maximize the environmental benefits. Motivated by this observation, in this study we assess the potentials of crowd-shipping based on metro commuters in the city of Brescia, Italy. Our contribution is twofold. First, we analyze the results of a survey conducted among metro users to assess their willingness to act as crowd-shippers. The main result is that most young commuters and retirees are willing to be crowd-shippers even for a null reward. Second, we assess the potential economic impact of using metro-based crowd-shipping coupled with a traditional home delivery service. To this end, we formulate a variant of the VRP model where the customers closest to the metro stations may be served either by a conventional vehicle or by a crowd-shipper. The model is implemented using Python with Gurobi solver. A computational study based on the Brescia case is performed to get insights on the economic advantages that a metro-based crowd delivery option may have for a retailing company.
Cutting plane methods play a significant role in modern solvers for tackling mixed-integer programming (MIP) problems. Proper selection of cuts would remove infeasible solutions in the early stage, thus largely reducing the computational burden without hurting the solution accuracy. However, the major cut selection approaches heavily rely on heuristics, which strongly depend on the specific problem at hand and thus limit their generalization capability. In this paper, we propose a data-driven and generalizable cut selection approach, named Cut Ranking, in the settings of multiple instance learning. To measure the quality of the candidate cuts, a scoring function, which takes the instance-specific cut features as inputs, is trained and applied in cut ranking and selection. In order to evaluate our method, we conduct extensive experiments on both synthetic datasets and real-world datasets. Compared with commonly used heuristics for cut selection, the learning-based policy has shown to be more effective, and is capable of generalizing over multiple problems with different properties. Cut Ranking has been deployed in an industrial solver for large-scale MIPs. In the online A/B testing of the product planning problems with more than $10^7$ variables and constraints daily, Cut Ranking has achieved the average speedup ratio of 12.42% over the production solver without any accuracy loss of solution.
We present a dynamical system framework for understanding Nesterovs accelerated gradient method. In contrast to earlier work, our derivation does not rely on a vanishing step size argument. We show that Nesterov acceleration arises from discretizing an ordinary differential equation with a semi-implicit Euler integration scheme. We analyze both the underlying differential equation as well as the discretization to obtain insights into the phenomenon of acceleration. The analysis suggests that a curvature-dependent damping term lies at the heart of the phenomenon. We further establish connections between the discretized and the continuous-time dynamics.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا