Do you want to publish a course? Click here

Spin injection efficiency at metallic interfaces probed by THz emission spectroscopy

155   0   0.0 ( 0 )
 Added by Luca Perfetti LP
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Terahertz (THz) spin-to-charge conversion has become an increasingly important process for THz pulse generation and as a tool to probe ultrafast spin interactions at magnetic interfaces. However, its relation to traditional, steady state, ferromagnetic resonance techniques is poorly understood. Here we investigate nanometric trilayers of Co/X/Pt (X=Ti, Au or Au0:85W0:15) as a function of the X layer thickness, where THz emission generated by the inverse spin Hall effect is compared to the Gilbert damping of the ferromagnetic resonance. Through the insertion of the X layer we show that the ultrafast spin current injected in the non-magnetic layer defines a direct spin conductance, whereas the Gilbert damping leads to an effective spin mixing-conductance of the trilayer. Importantly, we show that these two parameters are connected to each other and that spin-memory losses can be modeled via an effective Hamiltonian with Rashba fields. This work highlights that magneto-circuits concepts can be successfully extended to ultrafast spintronic devices, as well as enhancing the understanding of spin-to-charge conversion processes through the complementarity between ultrafast THz spectroscopy and steady state techniques.



rate research

Read More

113 - M. V. Costache , M. Zaffalon , 2006
We study spin accumulation in an aluminium island, in which the injection of a spin current and the detection of the spin accumulation are done by means of four cobalt electrodes that connect to the island through transparent tunnel barriers. Although the four electrodes are designed as two electrode pairs of the same shape, they nonetheless all exhibit distinct switching fields. As a result the device can have several different magnetic configurations. From the measurements of the amplitude of the spin accumulation, we can identify these configurations, and using the diffusion equation for the spin imbalance, we extract the spin relaxation length $lambda_mathrm{sf} = 400 pm 50$~nm and an interface spin current polarization $P = (10 pm 1)%$ at low temperature and $lambda_mathrm{sf} = 350 pm 50$~nm, $P = (8 pm 1)%$ at room temperature.
Spin currents can modify the magnetic state of ferromagnetic ultrathin films through spin-orbit torque. They may be generated by means of spin-orbit interaction by either bulk or interfacial phenomena. Electrical transport measurements reveal a six-fold increase of the spin-orbit torque accompanied by a drastic reduction of the spin Hall magnetoresistance upon the introduction of a Cu interlayer in a Pt/Cu/Co/Pt structure with perpendicular magnetic anisotropy. We analyze the dependence of the spin Hall magnetoresistance with the thickness of the interlayer in the frame of a drift diffusion model that provides information on the expected spin currents and spin accumulations in the system. The results demonstrate that the major responsible of both effects is spin memory loss at the interface. The enhancement of the spin-orbit torque when introducing an interlayer opens the possibility to design more effient spintronic devices based on materials that are cheap and abundant such as copper.
Spin-orbit coupling (SOC) describes the relativistic interaction between the spin and momentum degrees of freedom of electrons, and is central to the rich phenomena observed in condensed matter systems. In recent years, new phases of matter have emerged from the interplay between SOC and low dimensionality, such as chiral spin textures and spin-polarized surface and interface states. These low-dimensional SOC-based realizations are typically robust and can be exploited at room temperature. Here we discuss SOC as a means of producing such fundamentally new physical phenomena in thin films and heterostructures. We put into context the technological promise of these material classes for developing spin-based device applications at room temperature.
95 - P. X. Xu , K. Xia , M. Zwierzycki 2006
As devices are reduced in size, interfaces start to dominate electrical transport making it essential to be able to describe reliably how they transmit and reflect electrons. For a number of nearly perfectly lattice-matched materials, we calculate from first-principles the dependence of the interface transparency on the crystal orientation. Quite remarkably, the largest anisotropy is predicted for interfaces between the prototype free-electron materials silver and aluminium for which a massive factor of two difference between (111) and (001) interfaces is found.
The idea to utilize not only the charge but also the spin of electrons in the operation of electronic devices has led to the development of spintronics, causing a revolution in how information is stored and processed. A novel advancement would be to develop ultrafast spintronics using femtosecond laser pulses. Employing terahertz (10$^{12}$ Hz) emission spectroscopy, we demonstrate optical generation of spin-polarized electric currents at the interfaces of metallic ferromagnetic heterostructures at the femtosecond timescale. The direction of the photocurrent is controlled by the helicity of the circularly polarized light. These results open up new opportunities for realizing spintronics in the unprecedented terahertz regime and provide new insights in all-optical control of magnetism.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا