No Arabic abstract
We numerically investigate the dynamics of a supernova fallback accretion confronting with a relativistic wind from a newborn neutron star (NS). The time evolution of the accretion shock in the radial direction is basically characterized by the encounter radius of the flow $r_mathrm{enc}$ and a dimensionless parameter $zeta equiv L/dot M_mathrm{fb}c^2$, where $L$ is the NS wind luminosity and $dot M_mathrm{fb}$ is the fallback mass accretion rate. We find that the critical condition for the fallback matter to reach near the NS surface can be simply described as $zeta < zeta_mathrm{min} equiv GM_*/c^2r_mathrm{enc}$ or $r_mathrm{enc}L/G M_* dot M_mathrm{fb} < 1$ independent of the wind Lorentz factor, where $M_*$ is the NS mass. With combining the condition for the fallback matter to bury the surface magnetic field under the NS crust, we discuss the possibility that the trifurcation of NSs into rotation-powered pulsars, central compact objects (CCOs), and magnetars can be induced by supernova fallback.
Natal kicks and spins are characteristic properties of neutron stars (NSs) and black holes (BHs). Both offer valuable clues to dynamical processes during stellar core collapse and explosion. Moreover, they influence the evolution of stellar multiple systems and the gravitational-wave signals from their inspiral and merger. Observational evidence of possibly generic spin-kick alignment has been interpreted as indication that NS spins are either induced with the NS kicks or inherited from progenitor rotation, which thus might play a dynamically important role during stellar collapse. Current three-dimensional supernova simulations suggest that NS kicks are transferred in the first seconds of the explosion, mainly by anisotropic mass ejection and, on a secondary level, anisotropic neutrino emission. In contrast, the NS spins are only determined minutes to hours later by angular momentum associated with fallback of matter that does not become gravitationally unbound in the supernova. Here, we propose a novel scenario to explain spin-kick alignment as a consequence of tangential vortex flows in the fallback matter that is accreted mostly from the direction of the NSs motion. For this effect the initial NS kick is crucial, because it produces a growing offset of the NS away from the explosion center, thus promoting onesided accretion. In this new scenario conclusions based on traditional concepts are reversed. For example, pre-kick NS spins are not required, and rapid progenitor-core rotation can hamper spin-kick alignment. We also discuss implications for natal BH kicks and the possibility of tossing the BHs spin axis during its formation.
We present magnetohydrodynamic numerical simulations of the late post-supernova hypercritical accretion to understand its effect on the magnetic field of the new-born neutron star. We consider as an example the case of a magnetic field loop protruding from the stars surface. The accreting matter is assumed to be non magnetized and, due to the high accretion rate, matter pressure dominates over magnetic pressure. We find that an accretion envelope develops very rapidly and once it becomes convectively stable the magnetic field is easily buried and pushed into the newly forming neutron star crust. However, for low enough accretion rates the accretion envelope remains convective for an extended period of time and only partial submergence of the magnetic field occurs due to a residual field that is maintained at the interface between the forming crust and the convective envelope. In this latter case, the outcome should be a weakly magnetized neutron star with a likely complicated field geometry. In our simulations we find the transition from total to partial submergence to occur around dotM ~ 10 M_sun/yr. Back-diffusion of the submerged magnetic field toward the surface, and the resulting growth of the dipolar component, may result in a delayed switch-on of a pulsar on time-scales of centuries to millenia.
The dependence of the spin frequency derivative $dot{ u}$ of accreting neutron stars with a strong magnetic field (X-ray pulsars) on the mass accretion rate (bolometric luminosity, $L_{bol}$) has been investigated for eight transient pulsars in binary systems with Be stars. Using data from the Fermi/GBM and Swift/BAT telescopes, we have shown that for seven of the eight systems the dependence $dot{ u}$ can be fitted by the model of angular momentum transfer through an accretion disk, which predicts the relation $dot{ u}sim L^{6/7}_{bol}$. Hysteresis in the dependence $dot{ u}(L_{bol})$ has been confirmed in the system V 0332+53 and has been detected for the first time in the systems KS 1947+300, GRO J1008-57, and 1A 0535+26. The radius of the neutron star magnetosphere in all of the investigated systems have been estimated. We show that this quantity varies from pulsar to pulsar and depends strongly on the analytical model and the estimates for the neutron star and binary system parameters.
The Intermediate Palomar Transient Factory reported the discovery of an unusual type II-P supernova iPTF14hls. Instead of a ~100-day plateau as observed for ordinary type II-P supernovae, the light curve of iPTF14hls has at least five distinct peaks, followed by a steep decline at ~1000 days since discovery. Until 500 days since discovery, the effective temperature of iPTF14hls is roughly constant at 5000-6000K . In this paper we propose that iPTF14hls is likely powered by intermittent fallback accretion. It is found that the light curve of iPTF14hls can be well fit by the usual t^{-5/3} accretion law until ~1000 days post discovery when the light curve transitions to a steep decline. To account for this steep decline, we suggest a power-law density profile for the late accreted material, rather than the constant profile as appropriated for the t^{-5/3} accretion law. Detailed modeling indicates that the total fallback mass is ~0.2M_{sun}, with an ejecta mass M_{ej}~21M_{sun}. We find the third peak of the light curve cannot be well fit by the fallback model, indicating that there could be some extra rapid energy injection. We suggest that this extra energy injection may be a result of a magnetic outburst if the central object is a neutron star. These results indicate that the progenitor of iPTF14hls could be a massive red supergiant.
The central engine of short gamma-ray bursts (sGRBs) is hidden from direct view, operating at a scale much smaller than that probed by the emitted radiation. Thus we must infer its origin not only with respect to the formation of the {it trigger} - the actual astrophysical configuration that is capable of powering a sGRB - but also from the consequences that follow from the various evolutionary pathways that may be involved in producing it. Considering binary neutron star mergers we critically evaluate, analytically and through numerical simulations, whether the neutrino-driven wind produced by the newly formed hyper-massive neutron star can allow the collimated relativistic outflow that follows its collapse to actually produce a sGRB or not. Upon comparison with the observed sGRB duration distribution, we find that collapse cannot be significantly delayed (<=100 ms) before the outflow is choked, thus limiting the possibility that long-lived hyper-massive remnants can account for these events. In the case of successful breakthrough of the jet through the neutrino-driven wind, the energy stored in the cocoon could contribute to the precursor and extended emission observed in sGRBs.