No Arabic abstract
The rheological properties of cells and tissues are central to embryonic development and homoeostasis in adult tissues and organs and are closely related to their physiological activities. In this work, we present our study of rheological experiments on cell monolayer under serum starvation compared to that of healthy cell monolayer with full serum. The normal functioning of cells depends on the micronutrient supply provided by the serum in the growth media. Serum starvation is one of the most widely used procedures in cell biology. Serum deficiency may lead to genomic instability, variation in protein expression, chronic diseases, and some specific types of cancers. However, the effect of deprivation of serum concentration on the material properties of cells is still unknown. Therefore, we performed the macro-rheology experiments to investigate the effect of serum starvation on a fully confluent Madin Darby Canine Kidney (MDCK) cell monolayer. The material properties such as storage modulus (G) and loss modulus (G), of the monolayer, were measured using oscillatory shear experiments under serum-free (0% FBS) and full serum (10% FBS) conditions. Additionally, the step strain experiments were performed to gain more insights into the viscoelastic properties of the cell monolayer. Our results indicate that without serum, the loss and storage moduli decrease and do not recover fully even after small deformation. This is because of the lack of nutrients, which may result in many permanent physiological changes. Whereas, the healthy cell monolayer under full serum condition, remains strong & flexible, and can fully recover even from a large deformation at higher strain.
We investigate the rheological characteristics of human blood plasma in shear and elongational flows. While we can confirm a Newtonian behavior in shear flow within experimental resolution, we find a viscoelastic behavior of blood plasma in the pure extensional flow of a capillary break-up rheometer. The influence of the viscoelasticity of blood plasma on capillary blood flow is tested in a microfluidic device with a contraction-expansion geometry. Differential pressure measurements revealed that the plasma has a pronounced flow resistance compared to that of pure water. Supplementary measurements indicate that the viscoelasticity of the plasma might even lead to viscoelastic instabilities under certain conditions. Our findings show that the viscoelastic properties of plasma should not be ignored in future studies on blood flow.
Compared to agile legged animals, wheeled and tracked vehicles often suffer large performance loss on granular surfaces like sand and gravel. Understanding the mechanics of legged locomotion on granular media can aid the development of legged robots with improved mobility on granular surfaces; however, no general force model yet exists for granular media to predict ground reaction forces during complex limb intrusions. Inspired by a recent study of sand-swimming, we develop a resistive force model in the vertical plane for legged locomotion on granular media. We divide an intruder of complex morphology and kinematics, e.g., a bio-inspired robot L-leg rotated through uniform granular media (loosely packed ~ 1 mm diameter poppy seeds), into small segments, and measure stresses as a function of depth, orientation, and direction of motion using a model leg segment. Summation of segmental forces over the intruder predicts the net forces on both an L-leg and a reversed L-leg rotated through granular media with better accuracy than using simple one-dimensional penetration and drag force models. A multi-body dynamic simulation using the resistive force model predicts the speeds of a small legged robot (15 cm, 150 g) moving on granular media using both L-legs and reversed L-legs.
Liquid-liquid phase separation occurs not only in bulk liquid, but also on surfaces. In physiology, the nature and function of condensates on cellular structures remain unexplored. Here, we study how the condensed protein TPX2 behaves on microtubules to initiate branching microtubule nucleation, which is critical for spindle assembly in eukaryotic cells. Using fluorescence, electron, and atomic force microscopies and hydrodynamic theory, we show that TPX2 on a microtubule reorganizes according to the Rayleigh-Plateau instability, like dew droplets patterning a spider web. After uniformly coating microtubules, TPX2 forms regularly spaced droplets from which branches nucleate. Droplet spacing increases with greater TPX2 concentration. A stochastic model shows that droplets make branching nucleation more efficient by confining the space along the microtubule where multiple necessary factors colocalize to nucleate a branch.
We present a numerical study of the rheology of a two-fluid emulsion in dilute and semidilute conditions. The analysis is performed for different capillary numbers, volume fraction and viscosity ratio under the assumption of negligible inertia and zero buoyancy force. The effective viscosity of the system increases for low values of the volume fraction and decreases for higher values, with a maximum for about 20 % concentration of the disperse phase. When the dispersed fluid has lower viscosity, the normalised effective viscosity becomes smaller than 1 for high enough volume fractions. To single out the effect of droplet coalescence on the rheology of the emulsion we introduce an Eulerian force which prevents merging, effectively modelling the presence of surfactants in the system. When the coalescence is inhibited the effective viscosity is always greater than 1 and the curvature of the function representing the emulsion effective viscosity vs. the volume fraction becomes positive, resembling the behaviour of suspensions of deformable particles. The reduction of the effective viscosity in the presence of coalescence is associated to the reduction of the total surface of the disperse phase when the droplets merge, which leads to a reduction of the interface tension contribution to the total shear stress. The probability density function of the flow topology parameter shows that the flow is mostly a shear flow in the matrix phase, with regions of extensional flow when the coalescence is prohibited. The flow in the disperse phase, instead, always shows rotational components. The first normal stress difference is positive whereas the second normal difference is negative, with their ratio being constant with the volume fraction. Our results clearly show that the coalescence efficiency strongly affects the system rheology and neglecting droplet merging can lead to erroneous predictions.
Sheep are gregarious animals, and they often aggregate into dense, cohesive flocks, especially under stress. In this paper, we use image processing tools to analyze a publicly available aerial video showing a dense sheep flock moving under the stimulus of a shepherding dog. Inspired by the fluidity of the motion, we implement a hydrodynamics approach, extracting velocity fields, and measuring their propagation and correlations in space and time. We find that while the flock overall is stationary, significant dynamics happens at the edges, notably in the form of fluctuations propagating like waves, and large-scale correlations spanning the entire flock. These observations highlight the importance of incorporating interfacial dynamics, for instance in the form of line tension, when using a hydrodynamics framework to model the dynamics of dense, non-polarized swarms.