No Arabic abstract
Tidal forces are important for understanding how close binary stars and compact exoplanetary systems form and evolve. However, tides are difficult to model and significant uncertainties exist about the strength of tides. Here, we investigate tidal circularization in close binaries using a large sample of well-characterised eclipsing systems. We searched TESS photometry from the southern hemisphere for eclipsing binaries. We derive best-fit orbital and stellar parameters by jointly modelling light curves and spectral energy distributions. To determine the eccentricity distribution of eclipsing binaries over a wide range of stellar temperatures ($3,000-50,000,$K) and orbital separations $a/R_1$ ($2-300$), we combine our newly obtained TESS sample with eclipsing binaries observed from the ground and by the Kepler mission. We find a clear dependency of stellar temperature and orbital separation in the eccentricities of close binaries. We compare our observations with predictions of the equilibrium and dynamical tides. We find that while cool binaries agree with the predictions of the equilibrium tide, a large fraction of binaries with temperatures between $6,250,$K and $10,000,$K and orbital separations between $a/R_1 sim 4$ and $10$ are found on circular orbits contrary to the predictions of the dynamical tide. This suggests that some binaries with radiative envelopes may be tidally circularised significantly more efficiently than usually assumed. Our findings on orbital circularization have important implications also in the context of hot Jupiters where tides have been invoked to explain the observed difference in the spin-orbit alignment between hot and cool host stars.
We have identified a quadruple system with two close eclipsing binaries in TESS data. The object is unresolved in Gaia and appears as a single source at parallax 1.08~$pm$0.01 mas. Both binaries have observable primary and secondary eclipses and were monitored throughout TESS Cycle 1 (sectors 1-13), falling within the TESS Continuous Viewing Zone. In one eclipsing binary (P = 5.488 d), the smaller star is completely occluded by the larger star during the secondary eclipse; in the other (P = 5.674 d) both eclipses are grazing. Using these data, spectroscopy, speckle photometry, SED analysis and evolutionary stellar tracks, we have constrained the masses and radii of the four stars in the two eclipsing binaries. The Li I EW indicates an age of 10-50 Myr and, with an outer period of $858^{+7}_{-5}$ days, our analysis indicates this is one of the most compact young 2+2 quadruple systems known.
Binary stars are places of complex stellar interactions. While all binaries are in principle converging towards a state of circularization, many eccentric systems are found even in advanced stellar phases. In this work we discuss the sample of binaries with a red-giant component, discovered from observations of the NASA Kepler space mission. We first discuss which effects and features of tidal interactions are detectable in photometry, spectroscopy and the seismic analysis. In a second step, the sample of binary systems observed with Kepler, is compared to the well studied sample of Verbunt & Phinney (1995, hereafter VP95). We find that this study of circularization of systems hosting evolving red-giant stars with deep convective envelopes is also well applicable to the red-giant binaries in the sample of Kepler stars.
Context. Intermediate- to high-mass stars are the least numerous types of stars and they are less well understood than their more numerous low-mass counterparts in terms of their internal physical processes. Modelling the photometric variability of a large sample of main-sequence intermediate- to high-mass stars in eclipsing binary systems will help to improve the models for such stars. Aims. Our goal is to compose a homogeneously compiled sample of main-sequence intermediate- to high-mass OBA-type dwarfs in eclipsing binary systems from TESS photometry. We search for binaries with and without pulsations and determine their approximate ephemerides. Methods. Our selection starts from a catalogue of dwarfs with colours corresponding to those of OBA-type dwarfs in the TESS Input Catalog. We develop a new automated method aimed at detecting eclipsing binaries in the presence of strong pulsational and/or rotational signal relative to the eclipse depths and apply it to publicly available 30-min cadence TESS light curves. Results. Using targets with TESS magnitudes below 15 and cuts in the 2MASS magnitude bands of $J - H < 0.045$ and $J - K < 0.06$ as most stringent criteria, we arrive at a total of 189 981 intermediate- to high-mass candidates, 91193 of which have light curves from at least one of two data reduction pipelines. The eclipsing binary detection and subsequent manual check for false positives resulted in 3155 unique OBA-type eclipsing binary candidates. Conclusions. Our sample of eclipsing binary stars in the intermediate- to high-mass regime allows for future binary (and asteroseismic) modelling with the aim to better understand the internal physical processes in this hot part of the main sequence.
ASAS is a long term project to monitor bright variable stars over the whole sky. It has discovered 50,122 variables brighter than V < 14 mag south of declination +28 degrees, and among them 11,099 eclipsing binaries. We present a preliminary analysis of 5,384 contact, 2,957 semi-detached, and 2,758 detached systems. The statistics of the distribution provides a qualitative confirmation of decades old idea of Flannery and Lucy that W UMa type binaries evolve through a series of relaxation oscillations: ASAS finds comparable number of contact and semidetached systems. The most surprising result is a very small number of detached eclipsing binaries with periods P < 1 day, the systems believed to be the progenitors of W UMa stars. As many (perhaps all) contact binaries have companions, there is a possibility that some were formed in a Kozai cycle, as suggested by Eggleton and his associates.
The Upper Scorpius OB association is the nearest region of recent massive star formation and thus an important benchmark for investigations concerning stellar evolution and planet formation timescales. We present nine EBs in Upper Scorpius, three of which are newly reported here and all of which were discovered from K2 photometry. Joint fitting of the eclipse photometry and radial velocities from newly acquired Keck-I/HIRES spectra yields precise masses and radii for those systems that are spectroscopically double-lined. The binary orbital periods in our sample range from 0.6-100 days, with total masses ranging from 0.2-8 $M_odot$. At least 33% of the EBs reside in hierarchical multiples, including two triples and one quadruple. We use these EBs to develop an empirical mass-radius relation for pre-main-sequence stars, and to evaluate the predictions of widely-used stellar evolutionary models. We report evidence for an age of 5-7 Myr which is self-consistent in the mass range of 0.3-5 $M_odot$ and based on the fundamentally-determined masses and radii of eclipsing binaries (EBs). Evolutionary models including the effects of magnetic fields imply an age of 9-10 Myr. Our results are consistent with previous studies that indicate many models systematically underestimate the masses of low-mass stars by 20-60% based on H-R diagram analyses. We also consider the dynamical states of several binaries and compare with expectations from tidal dissipation theories. Finally, we identify RIK 72 b as a long-period transiting brown dwarf ($M = 59.2 pm 6.8 M_mathrm{Jup}$, $R = 3.10 pm 0.31 R_mathrm{Jup}$, $P approx 97.8$ days) and an ideal benchmark for brown dwarf cooling models at 5-10 Myr.