No Arabic abstract
Retinal artery/vein (A/V) classification is a critical technique for diagnosing diabetes and cardiovascular diseases. Although deep learning based methods achieve impressive results in A/V classification, their performances usually degrade severely when being directly applied to another database, due to the domain shift, e.g., caused by the variations in imaging protocols. In this paper, we propose a novel vessel-mixing based consistency regularization framework, for cross-domain learning in retinal A/V classification. Specially, to alleviate the severe bias to source domain, based on the label smooth prior, the model is regularized to give consistent predictions for unlabeled target-domain inputs that are under perturbation. This consistency regularization implicitly introduces a mechanism where the model and the perturbation is opponent to each other, where the model is pushed to be robust enough to cope with the perturbation. Thus, we investigate a more difficult opponent to further inspire the robustness of model, in the scenario of retinal A/V, called vessel-mixing perturbation. Specially, it effectively disturbs the fundus images especially the vessel structures by mixing two images regionally. We conduct extensive experiments on cross-domain A/V classification using four public datasets, which are collected by diverse institutions and imaging devices. The results demonstrate that our method achieves the state-of-the-art cross-domain performance, which is also close to the upper bound obtained by fully supervised learning on target domain.
Retinal artery/vein (A/V) classification plays a critical role in the clinical biomarker study of how various systemic and cardiovascular diseases affect the retinal vessels. Conventional methods of automated A/V classification are generally complicated and heavily depend on the accurate vessel segmentation. In this paper, we propose a multi-task deep neural network with spatial activation mechanism that is able to segment full retinal vessel, artery and vein simultaneously, without the pre-requirement of vessel segmentation. The input module of the network integrates the domain knowledge of widely used retinal preprocessing and vessel enhancement techniques. We specially customize the output block of the network with a spatial activation mechanism, which takes advantage of a relatively easier task of vessel segmentation and exploits it to boost the performance of A/V classification. In addition, deep supervision is introduced to the network to assist the low level layers to extract more semantic information. The proposed network achieves pixel-wise accuracy of 95.70% for vessel segmentation, and A/V classification accuracy of 94.50%, which is the state-of-the-art performance for both tasks on the AV-DRIVE dataset. Furthermore, we have also tested the model performance on INSPIRE-AVR dataset, which achieves a skeletal A/V classification accuracy of 91.6%.
Retinal artery/vein (A/V) classification lays the foundation for the quantitative analysis of retinal vessels, which is associated with potential risks of various cardiovascular and cerebral diseases. The topological connection relationship, which has been proved effective in improving the A/V classification performance for the conventional graph based method, has not been exploited by the deep learning based method. In this paper, we propose a Topology Ranking Generative Adversarial Network (TR-GAN) to improve the topology connectivity of the segmented arteries and veins, and further to boost the A/V classification performance. A topology ranking discriminator based on ordinal regression is proposed to rank the topological connectivity level of the ground-truth, the generated A/V mask and the intentionally shuffled mask. The ranking loss is further back-propagated to the generator to generate better connected A/V masks. In addition, a topology preserving module with triplet loss is also proposed to extract the high-level topological features and further to narrow the feature distance between the predicted A/V mask and the ground-truth. The proposed framework effectively increases the topological connectivity of the predicted A/V masks and achieves state-of-the-art A/V classification performance on the publicly available AV-DRIVE dataset.
Automatic segmentation of retinal vessels in fundus images plays an important role in the diagnosis of some diseases such as diabetes and hypertension. In this paper, we propose Deformable U-Net (DUNet), which exploits the retinal vessels local features with a U-shape architecture, in an end to end manner for retinal vessel segmentation. Inspired by the recently introduced deformable convolutional networks, we integrate the deformable convolution into the proposed network. The DUNet, with upsampling operators to increase the output resolution, is designed to extract context information and enable precise localization by combining low-level feature maps with high-level ones. Furthermore, DUNet captures the retinal vessels at various shapes and scales by adaptively adjusting the receptive fields according to vessels scales and shapes. Three public datasets DRIVE, STARE and CHASE_DB1 are used to train and test our model. Detailed comparisons between the proposed network and the deformable neural network, U-Net are provided in our study. Results show that more detailed vessels are extracted by DUNet and it exhibits state-of-the-art performance for retinal vessel segmentation with a global accuracy of 0.9697/0.9722/0.9724 and AUC of 0.9856/0.9868/0.9863 on DRIVE, STARE and CHASE_DB1 respectively. Moreover, to show the generalization ability of the DUNet, we used another two retinal vessel data sets, one is named WIDE and the other is a synthetic data set with diverse styles, named SYNTHE, to qualitatively and quantitatively analyzed and compared with other methods. Results indicates that DUNet outperforms other state-of-the-arts.
From diagnosing neovascular diseases to detecting white matter lesions, accurate tiny vessel segmentation in fundus images is critical. Promising results for accurate vessel segmentation have been known. However, their effectiveness in segmenting tiny vessels is still limited. In this paper, we study retinal vessel segmentation by incorporating tiny vessel segmentation into our framework for the overall accurate vessel segmentation. To achieve this, we propose a new deep convolutional neural network (CNN) which divides vessel segmentation into two separate objectives. Specifically, we consider the overall accurate vessel segmentation and tiny vessel segmentation as two individual objectives. Then, by exploiting the objective-dependent (homoscedastic) uncertainty, we enable the network to learn both objectives simultaneously. Further, to improve the individual objectives, we propose: (a) a vessel weight map based auxiliary loss for enhancing tiny vessel connectivity (i.e., improving tiny vessel segmentation), and (b) an enhanced encoder-decoder architecture for improved localization (i.e., for accurate vessel segmentation). Using 3 public retinal vessel segmentation datasets (CHASE_DB1, DRIVE, and STARE), we verify the superiority of our proposed framework in segmenting tiny vessels (8.3% average improvement in sensitivity) while achieving better area under the receiver operating characteristic curve (AUC) compared to state-of-the-art methods.
Unsupervised domain adaptation (UDA) aims to adapt existing models of the source domain to a new target domain with only unlabeled data. Most existing methods suffer from noticeable negative transfer resulting from either the error-prone discriminator network or the unreasonable teacher model. Besides, the local regional consistency in UDA has been largely neglected, and only extracting the global-level pattern information is not powerful enough for feature alignment due to the abuse use of contexts. To this end, we propose an uncertainty-aware consistency regularization method for cross-domain semantic segmentation. Firstly, we introduce an uncertainty-guided consistency loss with a dynamic weighting scheme by exploiting the latent uncertainty information of the target samples. As such, more meaningful and reliable knowledge from the teacher model can be transferred to the student model. We further reveal the reason why the current consistency regularization is often unstable in minimizing the domain discrepancy. Besides, we design a ClassDrop mask generation algorithm to produce strong class-wise perturbations. Guided by this mask, we propose a ClassOut strategy to realize effective regional consistency in a fine-grained manner. Experiments demonstrate that our method outperforms the state-of-the-art methods on four domain adaptation benchmarks, i.e., GTAV $rightarrow $ Cityscapes and SYNTHIA $rightarrow $ Cityscapes, Virtual KITTI $rightarrow$ KITTI and Cityscapes $rightarrow$ KITTI.