Do you want to publish a course? Click here

Emerging symmetric strain response and weakening nematic fluctuations in strongly hole-doped iron-based superconductors

84   0   0.0 ( 0 )
 Added by Paul Wiecki
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Electronic nematicity is often found in unconventional superconductors, suggesting its relevance for electronic pairing. In the strongly hole-doped iron-based superconductors, the symmetry channel and strength of the nematic fluctuations, as well as the possible presence of long-range nematic order, remain controversial. Here, we address these questions using transport measurements under elastic strain. By decomposing the strain response into the appropriate symmetry channels, we demonstrate the emergence of a giant in-plane symmetric contribution, associated with the growth of both strong electronic correlations and the sensitivity of these correlations to strain. We find weakened remnants of the nematic fluctuations that are present at optimal doping, but no change in the symmetry channel of nematic fluctuations with hole doping. Furthermore, we find no evidence for a nematic-ordered state in the AFe$_2$As$_2$(A = K, Rb, Cs) superconductors. These results revise the current understanding of nematicity in hole-doped iron-based superconductors.



rate research

Read More

We report Raman scattering measurement of charge nematic fluctuations in the tetragonal phase of BaFe$_2$As$_2$ and Sr(Fe$_{1-x}$Co$_x$)$_2$As$_2$ (x=0.04) single crystals. In both systems, the observed nematic fluctuations are found to exhibit divergent Curie-Weiss like behavior with very similar characteristic temperature scales, indicating a universal tendency towards charge nematic order in 122 iron-based superconductors.
Using a variational Monte Carlo method, we investigate the nematic state in iron-base superconductors based on a three-band Hubbard model. Our results demonstrate that the nematic state, formed by introducing an anisotropic hopping order into the projected wave function, can arise in the underdoped regime when a realistic off-site Coulomb interaction $V$ is considered. {color {red} We demonstrate that the off-site Coulomb interaction $V$, which is neglected so far in the analysis of iron-base superconductors, make a dominant contribution to the stabilization of nematic state. We calculate the doping dependencies of the anisotropic properties such as the unequal occupation of $d_{xz}$ and $d_{yz}$ orbitals, anisotropies of kinetic energy and spin correlations, and show that they are all suppressed upon electron doping, which are consistent with the intrinsic anisotropies observed by optical spectrum measurement and ARPES experiments.
141 - Shan Wu , Yu Song , Yu He 2020
Interactions between nematic fluctuations, magnetic order and superconductivity are central to the physics of iron-based superconductors. Here we report on in-plane transverse acoustic phonons in hole-doped Sr$_{1-x}$Na$_x$Fe$_2$As$_2$ measured via inelastic X-ray scattering, and extract both the nematic susceptibility and the nematic correlation length. By a self-contained method of analysis, for the underdoped ($x=0.36$) sample, which harbors a magnetically-ordered tetragonal phase, we find it hosts a short nematic correlation length $xi$ ~ 10 $AA$ and a large nematic susceptibility $chi_{rm nem}$. The optimal-doped ($x=0.55$) sample exhibits weaker phonon softening effects, indicative of both reduced $xi$ and $chi_{rm nem}$. Our results suggest short-range nematic fluctuations may favor superconductivity, placing emphasis on the nematic correlation length for understanding the iron-based superconductors.
Nematicity is ubiquitous in electronic phases of high-$T_c$ superconductors, particularly in the Fe-based systems. We used inelastic x-ray scattering to extract the temperature-dependent nematic correlation length $xi$ from the anomalous softening of acoustic phonon modes in FeSe, underdoped Ba(Fe$_{0.97}$Co$_{0.03}$)$_2$As$_2$ and optimally doped Ba(Fe$_{0.94}$Co$_{0.06}$)$_2$As$_2$. In all cases, we find that $xi$ is well described by a power law $(T-T_0)^{-1/2}$ extending over a wide temperature range. We attributed this mean-field behavior and the extended fluctuation regime to a sizable nemato-elastic coupling, which may be detrimental to superconductivity.
198 - B. Xu , Y. M. Dai , H. Xiao 2016
In iron-based superconductors, a spin-density-wave (SDW) magnetic order is suppressed with doping and unconventional superconductivity appears in close proximity to the SDW instability. The optical response of the SDW order shows clear gap features: substantial suppression in the low-frequency optical conductivity, alongside a spectral weight transfer from low to high frequencies. Here, we study the detailed temperature dependence of the optical response in three different series of the Ba122 system [Ba$_{1-x}$K$_{x}$Fe$_{2}$As$_{2}$, Ba(Fe$_{1-x}$Co$_{x}$)$_{2}$As$_{2}$ and BaFe$_{2}$(As$_{1-x}$P$_{x}$)$_{2}$]. Intriguingly, we found that the suppression of the low-frequency optical conductivity and spectral weight transfer appear at a temperature $T^{ast}$ much higher than the SDW transition temperature $T_{SDW}$. Since this behavior has the same optical feature and energy scale as the SDW order, we attribute it to SDW fluctuations. Furthermore, $T^{ast}$ is suppressed with doping, closely following the doping dependence of the nematic fluctuations detected by other techniques. These results suggest that the magnetic and nematic orders have an intimate relationship, in favor of the magnetic-fluctuation-driven nematicity scenario in iron-based superconductors.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا