In this work, we study the motion of a rigid body in a bounded domain which is filled with a compressible isentropic fluid. We consider the Navier-slip boundary condition at the interface as well as at the boundary of the domain. This is the first mathematical analysis of a compressible fluid-rigid body system where Navier-slip boundary conditions are considered. We prove existence of a weak solution of the fluid-structure system up to collision.
The inviscid limit for the two-dimensional compressible viscoelastic equations on the half plane is considered under the no-slip boundary condition. When the initial deformation tensor is a perturbation of the identity matrix and the initial density is near a positive constant, we establish the uniform estimates of solutions to the compressible viscoelastic flows in the conormal Sobolev spaces. It is well-known that for the corresponding inviscid limit of the compressible Navier-Stokes equations with the no-slip boundary condition, one does not expect the uniform energy estimates of solutions due to the appearance of strong boundary layers. However, when the deformation tensor effect is taken into account, our results show that the deformation tensor plays an important role in the vanishing viscosity process and can prevent the formation of strong boundary layers. As a result we are able to justify the inviscid limit of solutions for the compressible viscous flows under the no-slip boundary condition governed by the viscoelastic equations, based on the uniform conormal regularity estimates achieved in this paper.
We consider a fluid-structure interaction problem with Navier-slip boundary conditions in which the fluid is considered as a non-Newtonian fluid and the structure is described by a nonlinear multi-layered model. The fluid domain is driven by a nonlinear elastic shell and thus is not fixed. To simplify the problem, we map the moving fluid domain into a fixed domain by applying an arbitrary Lagrange Euler mapping. Unlike the classical method by which we can consider the problem as its entirety, we utilize the time-discretization and split the problem into a fluid subproblem and a structure subproblem by an operator splitting scheme. Since the structure subproblem is nonlinear, Lax-Milgram lemma does not hold. Here we prove the existence and uniqueness by means of the traditional semigroup theory. Noticing that the Non-Newtonian fluid possesses a $ p- $Laplacian structure, we show the existence and uniqueness of solutions to the fluid subproblem by considering the Browder-Minty theorem. With the uniform energy estimates, we deduce the weak and weak* convergence respectively. By a generalized Aubin-Lions-Simon Lemma proposed by Muha and Canic [J. Differential Equations {bf 266} (2019), 8370--8418], we obtain the strong convergence. Finally, we construct the test functions and pass the approximate weak formulation to the limit as time step goes to zero with the convergence results.
An initial boundary value problem for compressible Magnetohydrodynamics (MHD) is considered on an exterior domain (with the first Betti number vanishes) in $R^3$ in this paper. The global existence of smooth solutions near a given constant state for compressible MHD with the boundary conditions of Navier-slip for the velocity filed and perfect conduction for the magnetic field is established. Moreover the explicit decay rate is given. In particular, the results obtained in this paper also imply the global existence of classical solutions for the full compressible Navier-Stokes equations with Navier-slip boundary conditions on exterior domains in three dimensions, which is not available in literature, to the best of knowledge of the authors.
In this paper, we prove the compressible Euler limit from Boltzmann equation with complete diffusive boundary condition in half-space by employing the Hilbert expansion which includes interior and Knudsen layers. This rigorously justifies the corresponding formal analysis in Sones book cite{Sone-2007-Book} in the context of short time smooth solutions. In particular, different with previous works in this direction, no Prandtl layers are needed.
A rigorous derivation and validation for linear fluid-structure-interaction (FSI) equations for a rigid-body-motion problem is performed in an Eulerian framework. We show that the added-stiffness terms arising in the formulation of Fanion et al. (2000) vanish at the FSI interface in a first-order approximation. Several numerical tests with rigid-body motion are performed to show the validity of the derived formulation by comparing the time evolution between the linear and non-linear equations when the base flow is perturbed by identical small-amplitude perturbations. In all cases both the growth rate and angular frequency of the instability matches within $0.1%$ accuracy. The derived formulation is used to investigate the phenomenon of symmetry breaking for a rotating cylinder with an attached splitter-plate. The results show that the onset of symmetry breaking can be explained by the existence of a zero-frequency linearly unstable mode of the coupled fluid-structure-interaction system. Finally, the structural sensitivity of the least stable eigenvalue is studied for an oscillating cylinder, which is found to change significantly when the fluid and structural frequencies are close to resonance.