Quantum computers are expected to offer advantages over classical computers for combinatorial optimization. Here, we introduce a feedback-based strategy for quantum optimization, where the results of qubit measurements are used to constructively assign values to quantum circuit parameters. We show that this procedure results in an estimate of the combinatorial optimization problem solution that improves monotonically with the depth of the quantum circuit. Importantly, the measurement-based feedback enables approximate solutions to the combinatorial optimization problem without the need for any classical optimization effort, as would be required for the quantum approximate optimization algorithm (QAOA). Numerical analyses are presented that investigate the utility of this feedback-based protocol for the graph-partitioning problem MaxCut.