Do you want to publish a course? Click here

Small-scale shear: Peeling off diffuse subhalos with gravitational waves

70   0   0.0 ( 0 )
 Added by Han Gil Choi
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Subhalos at subgalactic scales ($Mlesssim 10^7 M_odot$ or $kgtrsim 10^3 ,{rm Mpc}^{-1}$) are pristine test beds of dark matter (DM). However, they are too small, diffuse and dark to be visible, in any existing observations. In this paper, we develop a complete formalism for weak and strong diffractive lensing, which can be used to probe such subhalos with chirping gravitational waves (GWs). Also, we show that Navarro-Frenk-White(NFW) subhalos in this mass range can indeed be detected individually, albeit at a rate of ${cal O}(10)$ or less per year at BBO and others limited by small merger rates and large required SNR $gtrsim 1/gamma(r_0) sim 10^3$. It becomes possible as NFW scale radii $r_0$ are of the right size comparable to the GW Fresnel length $r_F$, and unlike all existing probes, their lensing is more sensitive to lighter subhalos. Remarkably, our formalism further reveals that the frequency dependence of weak lensing (which is actually the detectable effect) is due to shear $gamma$ at $r_F$. Not only is it consistent with an approximate scaling invariance, but it also offers a new way to measure the mass profile at a successively smaller scale of chirping $r_F propto f^{-1/2}$. Meanwhile, strong diffraction that produces a blurred Einstein ring has a universal frequency dependence, allowing only detections. These are further demonstrated through semianalytic discussions of power-law profiles. Our developments for a single lens can be generalized and will promote diffractive lensing to a more concrete and promising physics in probing DM and small-scale structures.



rate research

Read More

62 - Pierre G. Auclair 2020
Numerical simulations and analytical models suggest that infinite cosmic strings produce cosmic string loops of all sizes with a given power-law. Precise estimations of the power-law exponent are still matter of debate while numerical simulations do not incorporate all the radiation and back-reaction effects expected to affect the network at small scales. Previously it has been shown, using a Boltzmann approach, that depending on the steepness of the loop production function and the gravitational back-reaction scale, a so-called Extra Population of Small Loops (EPSL) can be generated in the loop number density. We propose a framework to study the influence of this extra population of small loops on the Stochastic Background of Gravitational Waves (SBGW). We show that this extra population can have a significant signature at frequencies higher than $H_0(Gamma Gmu)^{-1}$ where $Gamma$ is of order $50$ and $H_0$ is the Hubble constant. We propose a complete classification of the gravitational wave power spectra expected from cosmic strings into four classes, including the model of Blanco-Pillado, Olum and Shlaer and the model of Lorenz, Ringeval and Sakellariadou. Finally we show that given the uncertainties on the Polchinski-Rocha exponents, two hybrid classes of gravitational wave power spectrum can be considered giving very different predictions for the SBGW.
We study the production of gravitational waves during oscillations of the inflaton around the minimum of a cuspy potential after inflation. We find that a cusp in the potential can trigger copious oscillon formation, which sources a characteristic energy spectrum of gravitational waves with double peaks. The discovery of such a double-peak spectrum could test the underlying inflationary physics.
We discuss how one can reconstruct the thermal history of the Universe by combining cosmic microwave background (CMB) measurements and gravitational wave (GW) direct detection experiments. Assuming various expansion eras to take place after the inflationary reheating and before Big-Bang Nucleosynthesis (BBN), we show how measurements of the GW spectrum can be used to break the degeneracies associated with CMB data, the latter being sensitive to the total amount of cosmic expansion only. In this context, we argue that the expected constraints from future CMB and GW experiments can probe a scenario in which there exists late-time entropy production in addition to the standard reheating. We show that, for some cases, combining data from future CMB and GW direct detection experiments allows the determination of the reheating temperature, the amount of entropy produced and the temperature at which the standard radiation era started.
Primordial black holes (PBHs) from the early Universe have been connected with the nature of dark matter and can significantly affect cosmological history. We show that coincidence dark radiation and density fluctuation gravitational wave signatures associated with evaporation of $lesssim 10^9$ g PBHs can be used to explore and discriminate different formation scenarios of spinning and non-spinning PBHs spanning orders of magnitude in mass-range, which is challenging to do otherwise.
Stochastic gravitational wave backgrounds (SGWBs) receive increasing attention and provide a new possibility to directly probe the early Universe. In the preheating process at the end of inflation, parametric resonance can generate large energy density perturbations and efficiently produce gravitational waves (GWs) which carry unique information about inflation. Since the peak frequency of such GWs is approximately proportional to the inflationary energy scale, $Lambda_{mathrm{inf}}$, GWs from preheating are expected to be observed by interferometer GW detectors in low-scale inflationary models. We investigate the dependence of the amplitude of such GWs on $Lambda_{mathrm{inf}}$, and find that the present energy spectrum of these GWs does not depend on $Lambda_{mathrm{inf}}$ only in the case of $Lambda_{mathrm{inf}}$ is above a critical value $Lambda_{c}$, a parameter depending on the resonance strength. We numerically obtain $Lambda_{c}$ in terms of the model parameters in linear approximation and then conduct lattice simulations to verify this result. For $Lambda_{mathrm{inf}}lesssimLambda_{c}$, the amplitude of GWs quickly decreases with $Lambda_{mathrm{inf}}$ and becomes challenging to observe. In turn, observing such GWs in interferometer detectors also helps to determine $Lambda_{mathrm{inf}}$ and the resonance strength during the preheating.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا