No Arabic abstract
In cerebrovascular networks, some vertices are more connected to each other than with the rest of the vasculature, defining a community structure. Here, we introduce a class of model networks built by rewiring Random Regular Graphs, which enables to reproduce this community structure and other topological properties of cerebrovascular networks. We use these model networks to study the global flow reduction induced by the removal of a single edge. We analytically show that this global flow reduction can be expressed as a function of the initial flow rate in the removed edge and of a topological quantity, both of which display probability distributions following Cauchy laws, i.e. with large tails. As a result, we show that the distribution of blood flow reductions is strongly influenced by the community structure. In particular, the probability of large flow reductions increases substantially when the community structure is stronger, weakening the network resilience to single capillary occlusions. We discuss the implications of these findings in the context of Alzheimers Disease, in which the importance of vascular mechanisms, including capillary occlusions, is beginning to be uncovered.
We present a new layout algorithm for complex networks that combines a multi-scale approach for community detection with a standard force-directed design. Since community detection is computationally cheap, we can exploit the multi-scale approach to generate network configurations with close-to-minimal energy very fast. As a further asset, we can use the knowledge of the community structure to facilitate the interpretation of large networks, for example the network defined by protein-protein interactions.
This study aims to quantify community resilience based on fluctuations in the visits to various Point-of-Interest (POIs) locations. Visit to POIs is an essential indicator of human activities and captures the combined effects of perturbations in people lifestyles, built environment conditions, and businesses status. The study utilized digital trace data of unique visits to POIs in the context of the 2017 Hurricane Harvey in Houston (Texas, USA) to examine spatial patterns of impact and total recovery effort and utilized these measures to quantify community resilience. The results showed that certain POI categories such as building materials and supplies dealers and grocery stores were the most resilient elements of the community compared to the other POI categories. On the other hand, categories such as medical facilities and entertainment were found to have lower resilience values. This result suggests that these categories were either not essential for community recovery or that the community was not able to access these services at normal levels immediately after the hurricane. In addition, the spatial analyses revealed that many areas in the community with lower levels of resilience experienced extensive flooding. However, some areas with low resilience were not flooded extensively, suggesting that spatial reach of the impacts goes beyond flooded areas. The results demonstrate the importance of the approach proposed in our study. While this study focused on Houston and only analysed one natural hazard, the approach can be applied to other communities and disaster contexts. Applying this approach, emergency managers and public officials can efficiently monitor the patterns of disaster impacts and recovery across different spatial areas and POI categories and also identify POI categories and areas of their community that need to be prioritized for resource allocation.
Networks are a convenient way to represent complex systems of interacting entities. Many networks contain communities of nodes that are more densely connected to each other than to nodes in the rest of the network. In this paper, we investigate the detection of communities in temporal networks represented as multilayer networks. As a focal example, we study time-dependent financial-asset correlation networks. We first argue that the use of the modularity quality function---which is defined by comparing edge weights in an observed network to expected edge weights in a null network---is application-dependent. We differentiate between null networks and null models in our discussion of modularity maximization, and we highlight that the same null network can correspond to different null models. We then investigate a multilayer modularity-maximization problem to identify communities in temporal networks. Our multilayer analysis only depends on the form of the maximization problem and not on the specific quality function that one chooses. We introduce a diagnostic to measure emph{persistence} of community structure in a multilayer network partition. We prove several results that describe how the multilayer maximization problem measures a trade-off between static community structure within layers and larger values of persistence across layers. We also discuss some computational issues that the popular Louvain heuristic faces with temporal multilayer networks and suggest ways to mitigate them.
We analyze the complex networks associated with brain electrical activity. Multichannel EEG measurements are first processed to obtain 3D voxel activations using the tomographic algorithm LORETA. Then, the correlation of the current intensity activation between voxel pairs is computed to produce a voxel cross-correlation coefficient matrix. Using several correlation thresholds, the cross-correlation matrix is then transformed into a network connectivity matrix and analyzed. To study a specific example, we selected data from an earlier experiment focusing on the MMN brain wave. The resulting analysis highlights significant differences between the spatial activations associated with Standard and Deviant tones, with interesting physiological implications. When compared to random data networks, physiological networks are more connected, with longer links and shorter path lengths. Furthermore, as compared to the Deviant case, Standard data networks are more connected, with longer links and shorter path lengths--i.e., with a stronger ``small worlds character. The comparison between both networks shows that areas known to be activated in the MMN wave are connected. In particular, the analysis supports the idea that supra-temporal and inferior frontal data work together in the processing of the differences between sounds by highlighting an increased connectivity in the response to a novel sound.
An individuals reaction time data to visual stimuli have usually been represented in Experimental Psychology by means of an ex-Gaussian function (EGF). In most previous works, researchers have mainly aimed at finding a meaning for the parameters of the EGF function in relation to psychological phenomena. We will focus on interpreting the reaction times (RTs) of a group of individuals rather than a single persons RT, which is relevant for the different contexts of social sciences. In doing so, the same model as for the Ideal Gases (IG) (an inanimate system of non-interacting particles) emerges from the experimental RT data. Both systems are characterised by a collective parameter which is k_BT in the case of the system of particles and what we have called life span parameter for the system of brains. Similarly, we came across a Maxwell-Boltzmann-type distribution for the system of brains which provides a natural and more complete characterisation of the collective time response than has ever been provided before. Thus, we are able to know about the behaviour of a single individual in relation to the coetaneous group to which they belong and through the application of a physical law. This leads to a new entropy-based methodology for the classification of the individuals forming the system which emerges from the physical law governing the system of brains. To the best of our knowledge, this is the first work in the literature reporting on the emergence of a physical theory (IG) from human RT experimental data.