Correlated many-fermion systems emerge in a broad range of phenomena in warm dense matter, plasmonics, and ultracold atoms. Quantum hydrodynamics (QHD) complements common first-principles methods for many-fermion systems and enables simulations at larger length and longer time scales. While the quantum Bohm potential is central to QHD, we illustrate its failure for strong perturbations. We extend QHD to this regime by utilizing the many-fermion quantum Bohm potential. This opens up the path to more accurate simulations in strongly perturbed warm dense matter, inhomogeneous quantum plasmas, and on nano-structure surfaces at scales unattainable with first-principles algorithms. The many-fermion quantum Bohm potential might also have important astrophysical applications in developing conformal-invariant cosmologies.