Do you want to publish a course? Click here

Quantum Information Dynamics between Quantum Ising Spins and a Central Qudit

96   0   0.0 ( 0 )
 Added by Joseph Szabo
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Understanding the role of entanglement and its dynamics in composite quantum systems lies at the forefront of quantum matter studies. Here we investigate competing entanglement dynamics in an open Ising-spin chain that allows for exchange with an external central qudit probe. We propose a new metric dubbed the multipartite entanglement loss (MEL) that provides an upper bound on the amount of information entropy shared between the spins and the qudit probe that serves to unify physical spin-fluctuations, Quantum Fisher Information (QFI), and bipartite entanglement entropy.

rate research

Read More

We study the out-of-equilibrium dynamics in the quantum Ising model with power-law interactions and positional disorder. For arbitrary dimension $d$ and interaction range $alpha geq d$ we analytically find a stretched exponential decay of the global magnetization and ensemble-averaged single-spin purity with a stretch-power $beta = d/alpha$ in the thermodynamic limit. Numerically, we confirm that glassy behavior persists for finite system sizes and sufficiently strong disorder. We identify dephasing between disordered coherent pairs as the main mechanism leading to a relaxation of global magnetization, whereas genuine many-body interactions lead to a loss of single-spin purity which signifies the build-up of entanglement. The emergence of glassy dynamics in the quantum Ising model extends prior findings in classical and open quantum systems, where the stretched exponential law is explained by a scale-invariant distribution of time scales, to both integrable and non-integrable quantum systems.
The electronic spin degrees of freedom in semiconductors typically have decoherence times that are several orders of magnitude longer than other relevant timescales. A solid-state quantum computer based on localized electron spins as qubits is therefore of potential interest. Here, a scheme that realizes controlled interactions between two distant quantum dot spins is proposed. The effective long-range interaction is mediated by the vacuum field of a high finesse microcavity. By using conduction-band-hole Raman transitions induced by classical laser fields and the cavity-mode, parallel controlled-not operations and arbitrary single qubit rotations can be realized. Optical techniques can also be used to measure the spin-state of each quantum dot.
Quantum algorithms are known for presenting more efficient solutions to certain computational tasks than any corresponding classical algorithm. It has been thought that the origin of the power of quantum computation has its roots in non-classical correlations such as entanglement or quantum discord. However, it has been recently shown that even a single pure qudit is sufficient to design an oracle-based algorithm which solves a black-box problem faster than any classical approach to the same problem. In particular, the algorithm that we consider determines whether eight permutation functions defined on a set of four elements is positive or negative cyclic. While any classical solution to this problem requires two evaluations of the function, quantum mechanics allows us to perform the same task with only a single evaluation. Here, we present the first experimental demonstration of the considered quantum algorithm with a quadrupolar nuclear magnetic resonance setup using a single four-level quantum system, i.e., a ququart.
Coherent oscillations between any two levels from four nuclear spin states of I=3/2 have been demonstrated in a nanometre-scale NMR semiconductor device, where nuclear spins are all-electrically controlled. Using this device, we discuss quantum logic operations on two fictitious qubits of the I=3/2 system, and propose a quantum state tomography scheme based on the measurement of longitudinal magnetization, $M_z$.
The ability to harness the dynamics of quantum information and entanglement is necessary for the development of quantum technologies and the study of complex quantum systems. On the theoretical side the dynamics of quantum information is a topic that is helping us unify and confront common problems in otherwise disparate fields in physics, such as quantum statistical mechanics and cosmology. On the experimental side the impressive developments on the manipulation of neutral atoms and trapped ions are providing new capabilities to probe their quantum dynamics. Here, we overview and discuss progress in characterizing and understanding the dynamics of quantum entanglement and information scrambling in quantum many-body systems. The level of control attainable over both the internal and external degrees of freedom of individual particles in these systems provides great insight into the intrinsic connection between entanglement and thermodynamics, bounds on information transport and computational complexity of interacting systems. In turn this understanding should enable the realization of quantum technologies.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا