Do you want to publish a course? Click here

Beyond Image to Depth: Improving Depth Prediction using Echoes

123   0   0.0 ( 0 )
 Added by Kranti Kumar Parida
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We address the problem of estimating depth with multi modal audio visual data. Inspired by the ability of animals, such as bats and dolphins, to infer distance of objects with echolocation, some recent methods have utilized echoes for depth estimation. We propose an end-to-end deep learning based pipeline utilizing RGB images, binaural echoes and estimated material properties of various objects within a scene. We argue that the relation between image, echoes and depth, for different scene elements, is greatly influenced by the properties of those elements, and a method designed to leverage this information can lead to significantly improved depth estimation from audio visual inputs. We propose a novel multi modal fusion technique, which incorporates the material properties explicitly while combining audio (echoes) and visual modalities to predict the scene depth. We show empirically, with experiments on Replica dataset, that the proposed method obtains 28% improvement in RMSE compared to the state-of-the-art audio-visual depth prediction method. To demonstrate the effectiveness of our method on larger dataset, we report competitive performance on Matterport3D, proposing to use it as a multimodal depth prediction benchmark with echoes for the first time. We also analyse the proposed method with exhaustive ablation experiments and qualitative results. The code and models are available at https://krantiparida.github.io/projects/bimgdepth.html



rate research

Read More

We present a method for depth estimation with monocular images, which can predict high-quality depth on diverse scenes up to an affine transformation, thus preserving accurate shapes of a scene. Previous methods that predict metric depth often work well only for a specific scene. In contrast, learning relative depth (information of being closer or further) can enjoy better generalization, with the price of failing to recover the accurate geometric shape of the scene. In this work, we propose a dataset and methods to tackle this dilemma, aiming to predict accurate depth up to an affine transformation with good generalization to diverse scenes. First we construct a large-scale and diverse dataset, termed Diverse Scene Depth dataset (DiverseDepth), which has a broad range of scenes and foreground contents. Compared with previous learning objectives, i.e., learning metric depth or relative depth, we propose to learn the affine-invariant depth using our diverse dataset to ensure both generalization and high-quality geometric shapes of scenes. Furthermore, in order to train the model on the complex dataset effectively, we propose a multi-curriculum learning method. Experiments show that our method outperforms previous methods on 8 datasets by a large margin with the zero-shot test setting, demonstrating the excellent generalization capacity of the learned model to diverse scenes. The reconstructed point clouds with the predicted depth show that our method can recover high-quality 3D shapes. Code and dataset are available at: https://tinyurl.com/DiverseDepth
While conventional depth estimation can infer the geometry of a scene from a single RGB image, it fails to estimate scene regions that are occluded by foreground objects. This limits the use of depth prediction in augmented and virtual reality applications, that aim at scene exploration by synthesizing the scene from a different vantage point, or at diminished reality. To address this issue, we shift the focus from conventional depth map prediction to the regression of a specific data representation called Layered Depth Image (LDI), which contains information about the occluded regions in the reference frame and can fill in occlusion gaps in case of small view changes. We propose a novel approach based on Convolutional Neural Networks (CNNs) to jointly predict depth maps and foreground separation masks used to condition Generative Adversarial Networks (GANs) for hallucinating plausible color and depths in the initially occluded areas. We demonstrate the effectiveness of our approach for novel scene view synthesis from a single image.
112 - Yihui He 2017
We consider image classification with estimated depth. This problem falls into the domain of transfer learning, since we are using a model trained on a set of depth images to generate depth maps (additional features) for use in another classification problem using another disjoint set of images. Its challenging as no direct depth information is provided. Though depth estimation has been well studied, none have attempted to aid image classification with estimated depth. Therefore, we present a way of transferring domain knowledge on depth estimation to a separate image classification task over a disjoint set of train, and test data. We build a RGBD dataset based on RGB dataset and do image classification on it. Then evaluation the performance of neural networks on the RGBD dataset compared to the RGB dataset. From our experiments, the benefit is significant with shallow and deep networks. It improves ResNet-20 by 0.55% and ResNet-56 by 0.53%. Our code and dataset are available publicly.
Self-supervised learning for monocular depth estimation is widely investigated as an alternative to supervised learning approach, that requires a lot of ground truths. Previous works have successfully improved the accuracy of depth estimation by modifying the model structure, adding objectives, and masking dynamic objects and occluded area. However, when using such estimated depth image in applications, such as autonomous vehicles, and robots, we have to uniformly believe the estimated depth at each pixel position. This could lead to fatal errors in performing the tasks, because estimated depth at some pixels may make a bigger mistake. In this paper, we theoretically formulate a variational model for the monocular depth estimation to predict the reliability of the estimated depth image. Based on the results, we can exclude the estimated depths with low reliability or refine them for actual use. The effectiveness of the proposed method is quantitatively and qualitatively demonstrated using the KITTI benchmark and Make3D dataset.
Depth from a monocular video can enable billions of devices and robots with a single camera to see the world in 3D. In this paper, we present an approach with a differentiable flow-to-depth layer for video depth estimation. The model consists of a flow-to-depth layer, a camera pose refinement module, and a depth fusion network. Given optical flow and camera pose, our flow-to-depth layer generates depth proposals and the corresponding confidence maps by explicitly solving an epipolar geometry optimization problem. Our flow-to-depth layer is differentiable, and thus we can refine camera poses by maximizing the aggregated confidence in the camera pose refinement module. Our depth fusion network can utilize depth proposals and their confidence maps inferred from different adjacent frames to produce the final depth map. Furthermore, the depth fusion network can additionally take the depth proposals generated by other methods to improve the results further. The experiments on three public datasets show that our approach outperforms state-of-the-art depth estimation methods, and has reasonable cross dataset generalization capability: our model trained on KITTI still performs well on the unseen Waymo dataset.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا