In canonical quantum gravity, the presence of spatial boundaries naturally leads to a boundary quantum states, representing quantum boundary conditions for the bulk fields. As a consequence, quantum states of the bulk geometry needs to be upgraded to wave-functions valued in the boundary Hilbert space: the bulk become quantum operator acting on boundary states. We apply this to loop quantum gravity and describe spin networks with 2d boundary as wave-functions mapping bulk holonomies to spin states on the boundary. This sets the bulk-boundary relation in a clear mathematical framework, which allows to define the boundary density matrix induced by a bulk spin network states after tracing out the bulk degrees of freedom. We ask the question of the bulk reconstruction and prove a boundary-to-bulk universal reconstruction procedure, to be understood as a purification of the mixed boundary state into a pure bulk state. We further perform a first investigation in the algebraic structure of induced boundary density matrices and show how correlations between bulk excitations, i.e. quanta of 3d geometry, get reflected into the boundary density matrix.