Pressure-enhanced interlayer exciton in WS2/MoSe2 van der Waals heterostructure


Abstract in English

The atomic-level vdW heterostructures have been one of the most interesting quantum material systems, due to their exotic physical properties. The interlayer coupling in these systems plays a critical role to realize novel physical observation and enrich interface functionality. However, there is still lack of investigation on the tuning of interlayer coupling in a quantitative way. A prospective strategy to tune the interlayer coupling is to change the electronic structure and interlayer distance by high pressure, which is a well-established method to tune the physical properties. Here, we construct a high-quality WS2/MoSe2 heterostructure in a DAC and successfully tuned the interlayer coupling through hydrostatic pressure. Typical photoluminescence spectra of the monolayer MoSe2 (ML-MoSe2), monolayer WS2 (ML-WS2) and WS2/MoSe2 heterostructure have been observed and its intriguing that their photoluminescence peaks shift with respect to applied pressure in a quite different way. The intralayer exciton of ML-MoSe2 and ML-WS2 show blue shift under high pressure with a coefficient of 19.8 meV/GPa and 9.3 meV/GPa, respectively, while their interlayer exciton shows relative weak pressure dependence with a coefficient of 3.4 meV/GPa. Meanwhile, external pressure helps to drive stronger interlayer interaction and results in a higher ratio of interlayer/intralayer exciton intensity, indicating the enhanced interlayer exciton behavior. The first-principles calculation reveals the stronger interlayer interaction which leads to enhanced interlayer exciton behavior in WS2/MoSe2 heterostructure under external pressure and reveals the robust peak of interlayer exciton. This work provides an effective strategy to study the interlayer interaction in vdW heterostructures, which could be of great importance for the material and device design in various similar quantum systems.

Download