Do you want to publish a course? Click here

The Virtual Observatory Ecosystem Facing the European Open Science Cloud

66   0   0.0 ( 0 )
 Added by Marco Molinaro
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The International Virtual Observatory Alliance (IVOA) has developed and built, in the last two decades, an ecosystem of distributed resources, interoperable and based upon open shared technological standards. In doing so the IVOA has anticipated, putting into practice for the astrophysical domain, the ideas of FAIR-ness of data and service resources and the Open-ness of sharing scientific results, leveraging on the underlying open standards required to fill the above. In Europe, efforts in supporting and developing the ecosystem proposed by the IVOA specifications has been provided by a continuous set of EU funded projects up to current H2020 ESCAPE ESFRI cluster. In the meantime, in the last years, Europe has realised the importance of promoting the Open Science approach for the research communities and started the European Open Science Cloud (EOSC) project to create a distributed environment for research data, services and communities. In this framework the European VO community, had to face the move from the interoperability scenario in the astrophysics domain into a larger audience perspective that includes a cross-domain FAIR approach. Within the ESCAPE project the CEVO Work Package (Connecting ESFRI to EOSC through the VO) has one task to deal with this integration challenge: a challenge where an existing, mature, distributed e-infrastructure has to be matched to a forming, more general architecture. CEVO started its works in the first months of 2019 and has already worked on the integration of the VO Registry into the EOSC e-infrastructure. This contribution reports on the first year and a half of integration activities, that involve applications, services and resources being aware of the VO scenario and compatible with the EOSC architecture.



rate research

Read More

The Europlanet-2020 programme, which ended on Aug 31st, 2019, included an activity called VESPA (Virtual European Solar and Planetary Access), which focused on adapting Virtual Observatory (VO) techniques to handle Planetary Science data. This paper describes some aspects of VESPA at the end of this 4-years development phase and at the onset of the newly selected Europlanet-2024 programme starting in 2020. The main objectives of VESPA are to facilitate searches both in big archives and in small databases, to enable data analysis by providing simple data access and online visualization functions, and to allow research teams to publish derived data in an interoperable environment as easily as possible. VESPA encompasses a wide scope, including surfaces, atmospheres, magnetospheres and planetary plasmas, small bodies, helio-physics, exoplanets, and spectroscopy in solid phase. This system relies in particular on standards and tools developed for the Astronomy VO (IVOA) and extends them where required to handle specificities of Solar System studies. It also aims at making the VO compatible with tools and protocols developed in different contexts, for instance GIS for planetary surfaces, or time series tools for plasma-related measurements. An essential part of the activity is to publish a significant amount of high-quality data in this system, with a focus on derived products resulting from data analysis or simulations.
The European Open Science Cloud (EOSC) aims to create a federated environment for hosting and processing research data to support science in all disciplines without geographical boundaries, such that data, software, methods and publications can be shared as part of an Open Science community of practice. This work presents the ongoing activities related to the implementation of visual analytics services, integrated into EOSC, towards addressing the diverse astrophysics user communities needs. These services rely on visualisation to manage the data life cycle process under FAIR principles, integrating data processing for imaging and multidimensional map creation and mosaicing, and applying machine learning techniques for detection of structures in large scale multidimensional maps.
In the framework of the Europlanet-RI program, a prototype of Virtual Observatory dedicated to Planetary Science was defined. Most of the activity was dedicated to the elaboration of standards to retrieve and visualize data in this field, and to provide light procedures to teams who wish to contribute with on-line data services. The architecture of this VO system and selected solutions are presented here, together with existing demonstrators.
The VESPA data access system focuses on applying Virtual Observatory (VO) standards and tools to Planetary Science. Building on a previous EC-funded Europlanet program, it has reached maturity during the first year of a new Europlanet 2020 program (started in 2015 for 4 years). The infrastructure has been upgraded to handle many fields of Solar System studies, with a focus both on users and data providers. This paper describes the broad lines of the current VESPA infrastructure as seen by a potential user, and provides examples of real use cases in several thematic areas. These use cases are also intended to identify hints for future developments and adaptations of VO tools to Planetary Science.
In the Virtual Observatory (VO), the Registry provides the mechanism with which users and applications discover and select resources -- typically, data and services -- that are relevant for a particular scientific problem. Even though the VO adopted technologies in particular from the bibliographic community where available, building the Registry system involved a major standardisation effort, involving about a dozen interdependent standard texts. This paper discusses the server-side aspects of the standards and their application, as regards the functional components (registries), the resource records in both format and content, the exchange of resource records between registries (harvesting), as well as the creation and management of the identifiers used in the system based on the notion of authorities. Registry record authors, registry operators or even advanced users thus receive a big picture serving as a guideline through the body of relevant standard texts. To complete this picture, we also mention common usage patterns and open issues as appropriate.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا