Do you want to publish a course? Click here

Stability of horizon with pressure and volume of d-dimensional charged AdS black holes with cloud of strings and quintessence

62   0   0.0 ( 0 )
 Added by Benrong Mu
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper, the thermodynamics and the stability of horizon of the charged AdS black hole surrounded by quintessence and cloud of strings in d-dimensional spacetime are studied via the scalar field scattering and the charged particle absorption. The cosmological constant is interpreted as a thermodynamics variable. During the study, we consider the case where the energy of the particle(scalar field) is related to the internal energy of the black hole. Furthermore, we also consider another assumption, which is proposed in [Phys. Rev. D 100, no.10, 104022 (2019)]. This assumption considers that the energy of the particle(scalar field) is related to the internal energy of the black hole. In addition, we compare and discuss the results obtained under these two assumptions. At the same time, we also considered the effect of the dimension. The thermodynamics of black holes in different dimensions has also been studied and compared.



rate research

Read More

87 - Rui Yin , Jing Liang , Benrong Mu 2021
The Joule-Thomson expansion is studied for Reissner-Nordstrom-Anti-de Sitter black holes with cloud of strings and quintessence, as well as its thermodynamics. The cosmological constant is treated as thermodynamic pressure, whose conjugate variable is considered as the volume. The characteristics of the Joule-Thomson expansion are studied in four main aspects with the case of $omega=-1$ and $omega=-frac{2}{3}$, including the Joule-Thomson coefficient, the inversion curves, the isenthalpic curves and the ratio between $T_{i}^{min}$ and $T_{c}$. The sign of the Joule-Thomson coefficient is possible for determining the occurrence of heating or cooling. The scattering point of the Joule-Thomson coefficient corresponds to the zero point of the Hawking temperature. Unlike the van der Waals fluids, the inversion curve is the dividing line between heating and cooling regions, above which the slope of the isenthalpic curve is positive and cooling occurs, and the cooling-heating critical point is more sensitive to $Q$. Concerning the ratio $frac{T_{i}^{min}}{T_{c}}$, we calculate it separately in the cases where only the cloud of strings, only quintessence and both are present.
Previously, the Maxwell equal-area law has been used to discuss the conditions satisfied by the phase transition of charged AdS black holes with cloud of string and quintessence, and it was concluded that black holes have phase transition similar to that of vdW system. The phase transition depends on the electric potential of the black hole and is not the one between a large black hole and a small black hole. On the basis of this result, we study the relation between the latent heat of the phase transition and the parameter of dark energy, and use the Landau continuous phase transition theory to discuss the critical phenomenon of the black hole with quintessence and give the critical exponent. By introducing the number density of the black hole molecules, some properties of the microstructure of black holes are studied in terms of a phase transition. It is found that the electric charge of the black hole and the normalization parameter related to the density of quintessence field play a key role in phase transition. By constructing the binary fluid model of the black hole molecules, we also discuss the microstructure of charged AdS black holes with a cloud of strings and quintessence.
115 - Meng-Sen Ma , Ren Zhao , Ya-Qin Ma 2016
We study the thermodynamic stabilities of uncharged and charged black holes surrounded by quintessence (BHQ) by means of effective thermodynamic quantities. When the state parameter of quintessence $omega_q$ is appropriately chosen, the structures of BHQ are something like that of black holes in de Sitter space. Constructing the effective first law of thermodynamics in two different ways, we can derive the effective thermodynamic quantities of BHQ. Especially, these effective thermodynamic quantities also satisfy Smarr-like formulae. It is found that the uncharged BHQ is always thermodynamically unstable due to negative heat capacity, while for the charged BHQ there are phase transitions of the second order. We also show that there is a great deal of difference on the thermodynamic properties and critical behaviors of BHQ between the two ways we employed.
We obtain a perturbative solution for rotating charged black holes in 5-dimensional Einstein-Maxwell-Chern-Simons theory with a negative cosmological constant. We start from a small undeformed Kerr-AdS solution and use the electric charge as a perturbative parameter to build up black holes with equal-magnitude angular momenta up to forth order. These black hole solutions are described by three parameters, the charge, horizon radius and horizon angular velocity. We determine the physical quantities of these black holes and study their dependence on the parameters of black holes and arbitrary Chern-Simons coefficient. In particular, for values of CS coupling constant beyond its supergravity amount, due to a rotational instability, counterrotating black holes arise. Also the rotating solutions appear to have vanishing angular momenta and do not manifest uniquely by their global charges.
We present a new family of asymptotically AdS four-dimensional black hole solutions with scalar hair of a gravitating system consisting of a scalar field minimally coupled to gravity with a self-interacting potential. For a certain profile of the scalar field we solve the Einstein equations and we determine the scalar potential. Thermodynamically we show that there is a critical temperature below which there is a phase transition of a black hole with hyperbolic horizon to the new hairy black hole configuration.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا