No Arabic abstract
Electronic charge rearrangement between components of a heterostructure is the fundamental principle to reach the electronic ground state. It is acknowledged that the density of states distribution of the components governs the amount of charge transfer, but a notable dependence on temperature has not yet been considered, particularly for weakly interacting systems. Here, we experimentally observe that the amount of ground state charge transfer in a van der Waals heterostructure formed by monolayer MoS2 sandwiched between graphite and a molecular electron acceptor layer increases by a factor of three when going from 7 K to room temperature. State-of-the-art electronic structure calculations of the full heterostructure that account for nuclear thermal fluctuations reveal intra-component electron-phonon coupling and inter-component electronic coupling as the key factors determining the amount of charge transfer. This conclusion is rationalized by a model applicable to multi-component van der Waals heterostructures.
Van-der-Waals heterostructures show many intriguing phenomena including ultrafast charge separation following strong excitonic absorption in the visible spectral range. However, despite the enormous potential for future applications in the field of optoelectronics, the underlying microscopic mechanism remains controversial. Here we use time- and angle-resolved photoemission spectroscopy combined with microscopic many-particle theory to reveal the relevant microscopic charge transfer channels in epitaxial WS$_2$/graphene heterostructures. We find that the timescale for efficient ultrafast charge separation in the material is determined by direct tunneling at those points in the Brillouin zone where WS$_2$ and graphene bands cross, while the lifetime of the charge separated transient state is set by defect-assisted tunneling through localized sulphur vacanices. The subtle interplay of intrinsic and defect-related charge transfer channels revealed in the present work can be exploited for the design of highly efficient light harvesting and detecting devices.
Silicene is a promising 2D Dirac material as a building block for van der Waals heterostructures (vdWHs). Here we investigate the electronic properties of hexagonal boron nitride/silicene (BN/Si) vdWHs using first-principles calculations. We calculate the energy band structures of BN/Si/BN heterostructures with different rotation angles and find that the electronic properties of silicene are retained and protected robustly by the BN layers. In BN/Si/BN/Si/BN heterostructure, we find that the band structure near the Fermi energy is sensitive to the stacking configurations of the silicene layers due to interlayer coupling. The coupling is reduced by increasing the number of BN layers between the silicene layers and becomes negligible in BN/Si/(BN)3/Si/BN. In (BN)n/Si superlattices, the band structure undergoes a conversion from Dirac lines to Dirac points by increasing the number of BN layers between the silicene layers. Calculations of silicene sandwiched by other 2D materials reveal that silicene sandwiched by low-carbon-doped boron nitride or HfO2 is semiconducting.
Van der Waals heterostructures give access to a wide variety of new phenomena that emerge thanks to the combination of properties brought in by the constituent layered materials. We show here that owing to an enhanced interaction cross section with electrons in a type I van der Waals heterostructure, made of single layer molybdenum disulphide and thin boron nitride films, electrons and holes created in boron nitride can be transferred to the dichalcogenide where they form electron-hole pairs yielding luminescence. This cathodoluminescence can be mapped with a spatial resolution far exceeding what can be achieved in a typical photoluminescence experiment, and is highly valuable to understand the optoelectronic properties at the nanometer scale. We find that in heterostructures prepared following the mainstream dry transfer technique, cathodoluminescence is locally extinguished, and we show that this extinction is associated with the formation of defects, that are detected in Raman spectroscopy and photoluminescence. We establish that to avoid defect formation induced by low-energy electron beams and to ensure efficient transfer of electrons and holes at the interface between the layers, flat and uniform interlayer interfaces are needed, that are free of trapped species, airborne ones or contaminants associated with sample preparation. We show that heterostructure fabrication using a pick-up technique leads to superior, intimate interlayer contacts associated with significantly more homogeneous cathodoluminescence.
Heterostructures of atomically thin van der Waals bonded monolayers have opened a unique platform to engineer Coulomb correlations, shaping excitonic, Mott insulating, or superconducting phases. In transition metal dichalcogenide heterostructures, electrons and holes residing in different monolayers can bind into spatially indirect excitons with a strong potential for optoelectronics, valleytronics, Bose condensation, superfluidity, and moire-induced nanodot lattices. Yet these ideas require a microscopic understanding of the formation, dissociation, and thermalization dynamics of correlations including ultrafast phase transitions. Here we introduce a direct ultrafast access to Coulomb correlations between monolayers; phase-locked mid-infrared pulses allow us to measure the binding energy of interlayer excitons in WSe2/WS2 hetero-bilayers by revealing a novel 1s-2p resonance, explained by a fully quantum mechanical model. Furthermore, we trace, with subcycle time resolution, the transformation of an exciton gas photogenerated in the WSe2 layer directly into interlayer excitons. Depending on the stacking angle, intra- and interlayer species coexist on picosecond scales and the 1s-2p resonance becomes renormalized. Our work provides a direct measurement of the binding energy of interlayer excitons and opens the possibility to trace and control correlations in novel artificial materials.
Recent research showed that the rotational degree of freedom in stacking 2D materials yields great changes in the electronic properties. Here we focus on an often overlooked question: are twisted geometries stable and what defines their rotational energy landscape? Our simulations show how epitaxy theory breaks down in these systems and we explain the observed behaviour in terms of an interplay between flexural phonons and the interlayer coupling, governed by Moire superlattice. Our argument applied to the well-studied MoS$_2$/Graphene system rationalize experimental results and could serve as guidance to design twistronics devices.