Do you want to publish a course? Click here

Dynamically Switching Human Prediction Models for Efficient Planning

56   0   0.0 ( 0 )
 Added by Arjun Sripathy
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

As environments involving both robots and humans become increasingly common, so does the need to account for people during planning. To plan effectively, robots must be able to respond to and sometimes influence what humans do. This requires a human model which predicts future human actions. A simple model may assume the human will continue what they did previously; a more complex one might predict that the human will act optimally, disregarding the robot; whereas an even more complex one might capture the robots ability to influence the human. These models make different trade-offs between computational time and performance of the resulting robot plan. Using only one model of the human either wastes computational resources or is unable to handle critical situations. In this work, we give the robot access to a suite of human models and enable it to assess the performance-computation trade-off online. By estimating how an alternate model could improve human prediction and how that may translate to performance gain, the robot can dynamically switch human models whenever the additional computation is justified. Our experiments in a driving simulator showcase how the robot can achieve performance comparable to always using the best human model, but with greatly reduced computation.



rate research

Read More

High capacity end-to-end approaches for human motion (behavior) prediction have the ability to represent subtle nuances in human behavior, but struggle with robustness to out of distribution inputs and tail events. Planning-based prediction, on the other hand, can reliably output decent-but-not-great predictions: it is much more stable in the face of distribution shift (as we verify in this work), but it has high inductive bias, missing important aspects that drive human decisions, and ignoring cognitive biases that make human behavior suboptimal. In this work, we analyze one family of approaches that strive to get the best of both worlds: use the end-to-end predictor on common cases, but do not rely on it for tail events / out-of-distribution inputs -- switch to the planning-based predictor there. We contribute an analysis of different approaches for detecting when to make this switch, using an autonomous driving domain. We find that promising approaches based on ensembling or generative modeling of the training distribution might not be reliable, but that there very simple methods which can perform surprisingly well -- including training a classifier to pick up on tell-tale issues in predicted trajectories.
Identifying algorithms that flexibly and efficiently discover temporally-extended multi-phase plans is an essential step for the advancement of robotics and model-based reinforcement learning. The core problem of long-range planning is finding an efficient way to search through the tree of possible action sequences. Existing non-learned planning solutions from the Task and Motion Planning (TAMP) literature rely on the existence of logical descriptions for the effects and preconditions for actions. This constraint allows TAMP methods to efficiently reduce the tree search problem but limits their ability to generalize to unseen and complex physical environments. In contrast, deep reinforcement learning (DRL) methods use flexible neural-network-based function approximators to discover policies that generalize naturally to unseen circumstances. However, DRL methods struggle to handle the very sparse reward landscapes inherent to long-range multi-step planning situations. Here, we propose the Curious Sample Planner (CSP), which fuses elements of TAMP and DRL by combining a curiosity-guided sampling strategy with imitation learning to accelerate planning. We show that CSP can efficiently discover interesting and complex temporally-extended plans for solving a wide range of physically realistic 3D tasks. In contrast, standard planning and learning methods often fail to solve these tasks at all or do so only with a huge and highly variable number of training samples. We explore the use of a variety of curiosity metrics with CSP and analyze the types of solutions that CSP discovers. Finally, we show that CSP supports task transfer so that the exploration policies learned during experience with one task can help improve efficiency on related tasks.
Those designing autonomous systems that interact with humans will invariably face questions about how humans think and make decisions. Fortunately, computational cognitive science offers insight into human decision-making using tools that will be familiar to those with backgrounds in optimization and control (e.g., probability theory, statistical machine learning, and reinforcement learning). Here, we review some of this work, focusing on how cognitive science can provide forward models of human decision-making and inverse models of how humans think about others decision-making. We highlight relevant recent developments, including approaches that synthesize blackbox and theory-driven modeling, accounts that recast heuristics and biases as forms of bounded optimality, and models that characterize human theory of mind and communication in decision-theoretic terms. In doing so, we aim to provide readers with a glimpse of the range of frameworks, methodologies, and actionable insights that lie at the intersection of cognitive science and control research.
It is critical to predict the motion of surrounding vehicles for self-driving planning, especially in a socially compliant and flexible way. However, future prediction is challenging due to the interaction and uncertainty in driving behaviors. We propose planning-informed trajectory prediction (PiP) to tackle the prediction problem in the multi-agent setting. Our approach is differentiated from the traditional manner of prediction, which is only based on historical information and decoupled with planning. By informing the prediction process with the planning of ego vehicle, our method achieves the state-of-the-art performance of multi-agent forecasting on highway datasets. Moreover, our approach enables a novel pipeline which couples the prediction and planning, by conditioning PiP on multiple candidate trajectories of the ego vehicle, which is highly beneficial for autonomous driving in interactive scenarios.
In this paper, we consider online planning in partially observable domains. Solving the corresponding POMDP problem is a very challenging task, particularly in an online setting. Our key contribution is a novel algorithmic approach, Simplified Information Theoretic Belief Space Planning (SITH-BSP), which aims to speed-up POMDP planning considering belief-dependent rewards, without compromising on the solutions accuracy. We do so by mathematically relating the simplified elements of the problem to the corresponding counterparts of the original problem. Specifically, we focus on belief simplification and use it to formulate bounds on the corresponding original belief-dependent rewards. These bounds in turn are used to perform branch pruning over the belief tree, in the process of calculating the optimal policy. We further introduce the notion of adaptive simplification, while re-using calculations between different simplification levels and exploit it to prune, at each level in the belief tree, all branches but one. Therefore, our approach is guaranteed to find the optimal solution of the original problem but with substantial speedup. As a second key contribution, we derive novel analytical bounds for differential entropy, considering a sampling-based belief representation, which we believe are of interest on their own. We validate our approach in simulation using these bounds and where simplification corresponds to reducing the number of samples, exhibiting a significant computational speedup while yielding the optimal solution.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا