Do you want to publish a course? Click here

Fooling Gaussian PTFs via Local Hyperconcentration

106   0   0.0 ( 0 )
 Added by Li-Yang Tan
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We give a pseudorandom generator that fools degree-$d$ polynomial threshold functions over $n$-dimensional Gaussian space with seed length $mathrm{poly}(d)cdot log n$. All previous generators had a seed length with at least a $2^d$ dependence on $d$. The key new ingredient is a Local Hyperconcentration Theorem, which shows that every degree-$d$ Gaussian polynomial is hyperconcentrated almost everywhere at scale $d^{-O(1)}$.



rate research

Read More

240 - Zander Kelley , Raghu Meka 2021
A polynomial threshold function (PTF) $f:mathbb{R}^n rightarrow mathbb{R}$ is a function of the form $f(x) = mathsf{sign}(p(x))$ where $p$ is a polynomial of degree at most $d$. PTFs are a classical and well-studied complexity class with applications across complexity theory, learning theory, approximation theory, quantum complexity and more. We address the question of designing pseudorandom generators (PRG) for polynomial threshold functions (PTFs) in the gaussian space: design a PRG that takes a seed of few bits of randomness and outputs a $n$-dimensional vector whose distribution is indistinguishable from a standard multivariate gaussian by a degree $d$ PTF. Our main result is a PRG that takes a seed of $d^{O(1)}log ( n / varepsilon)log(1/varepsilon)/varepsilon^2$ random bits with output that cannot be distinguished from $n$-dimensional gaussian distribution with advantage better than $varepsilon$ by degree $d$ PTFs. The best previous generator due to ODonnell, Servedio, and Tan (STOC20) had a quasi-polynomial dependence (i.e., seedlength of $d^{O(log d)}$) in the degree $d$. Along the way we prove a few nearly-tight structural properties of restrictions of PTFs that may be of independent interest.
We give a pseudorandom generator that fools $m$-facet polytopes over ${0,1}^n$ with seed length $mathrm{polylog}(m) cdot log n$. The previous best seed length had superlinear dependence on $m$. An immediate consequence is a deterministic quasipolynomial time algorithm for approximating the number of solutions to any ${0,1}$-integer program.
273 - Aya Hamed , Troy Lee 2013
Say that A is a Hadamard factorization of the identity I_n of size n if the entrywise product of A and the transpose of A is I_n. It can be easily seen that the rank of any Hadamard factorization of the identity must be at least sqrt{n}. Dietzfelbinger et al. raised the question if this bound can be achieved, and showed a boolean Hadamard factorization of the identity of rank n^{0.792}. More recently, Klauck and Wolf gave a construction of Hadamard factorizations of the identity of rank n^{0.613}. Over finite fields, Friesen and Theis resolved the question, showing for a prime p and r=p^t+1 a Hadamard factorization of the identity A of size r(r-1)+1 and rank r over F_p. Here we resolve the question for fields of zero characteristic, up to a constant factor, giving a construction of Hadamard factorizations of the identity of rank r and size (r+1)r/2. The matrices in our construction are blockwise Toeplitz, and have entries whose magnitudes are binomial coefficients.
LiDAR point clouds collected from a moving vehicle are functions of its trajectories, because the sensor motion needs to be compensated to avoid distortions. When autonomous vehicles are sending LiDAR point clouds to deep networks for perception and planning, could the motion compensation consequently become a wide-open backdoor in those networks, due to both the adversarial vulnerability of deep learning and GPS-based vehicle trajectory estimation that is susceptible to wireless spoofing? We demonstrate such possibilities for the first time: instead of directly attacking point cloud coordinates which requires tampering with the raw LiDAR readings, only adversarial spoofing of a self-driving cars trajectory with small perturbations is enough to make safety-critical objects undetectable or detected with incorrect positions. Moreover, polynomial trajectory perturbation is developed to achieve a temporally-smooth and highly-imperceptible attack. Extensive experiments on 3D object detection have shown that such attacks not only lower the performance of the state-of-the-art detectors effectively, but also transfer to other detectors, raising a red flag for the community. The code is available on https://ai4ce.github.io/FLAT/.
An $ntimes n$ matrix $M$ is called a textit{fooling-set matrix of size $n$} if its diagonal entries are nonzero and $M_{k,ell} M_{ell,k} = 0$ for every $k e ell$. Dietzfelbinger, Hromkovi{v{c}}, and Schnitger (1996) showed that $n le (mbox{rk} M)^2$, regardless of over which field the rank is computed, and asked whether the exponent on $mbox{rk} M$ can be improved. We settle this question. In characteristic zero, we construct an infinite family of rational fooling-set matrices with size $n = binom{mbox{rk} M+1}{2}$. In nonzero characteristic, we construct an infinite family of matrices with $n= (1+o(1))(mbox{rk} M)^2$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا