No Arabic abstract
Inferring causal individual treatment effect (ITE) from observational data is a challenging problem whose difficulty is exacerbated by the presence of treatment assignment bias. In this work, we propose a new way to estimate the ITE using the domain generalization framework of invariant risk minimization (IRM). IRM uses data from multiple domains, learns predictors that do not exploit spurious domain-dependent factors, and generalizes better to unseen domains. We propose an IRM-based ITE estimator aimed at tackling treatment assignment bias when there is little support overlap between the control group and the treatment group. We accomplish this by creating diversity: given a single dataset, we split the data into multiple domains artificially. These diverse domains are then exploited by IRM to more effectively generalize regression-based models to data regions that lack support overlap. We show gains over classical regression approaches to ITE estimation in settings when support mismatch is more pronounced.
The standard risk minimization paradigm of machine learning is brittle when operating in environments whose test distributions are different from the training distribution due to spurious correlations. Training on data from many environments and finding invariant predictors reduces the effect of spurious features by concentrating models on features that have a causal relationship with the outcome. In this work, we pose such invariant risk minimization as finding the Nash equilibrium of an ensemble game among several environments. By doing so, we develop a simple training algorithm that uses best response dynamics and, in our experiments, yields similar or better empirical accuracy with much lower variance than the challenging bi-level optimization problem of Arjovsky et al. (2019). One key theoretical contribution is showing that the set of Nash equilibria for the proposed game are equivalent to the set of invariant predictors for any finite number of environments, even with nonlinear classifiers and transformations. As a result, our method also retains the generalization guarantees to a large set of environments shown in Arjovsky et al. (2019). The proposed algorithm adds to the collection of successful game-theoretic machine learning algorithms such as generative adversarial networks.
The defining challenge for causal inference from observational data is the presence of `confounders, covariates that affect both treatment assignment and the outcome. To address this challenge, practitioners collect and adjust for the covariates, hoping that they adequately correct for confounding. However, including every observed covariate in the adjustment runs the risk of including `bad controls, variables that induce bias when they are conditioned on. The problem is that we do not always know which variables in the covariate set are safe to adjust for and which are not. To address this problem, we develop Nearly Invariant Causal Estimation (NICE). NICE uses invariant risk minimization (IRM) [Arj19] to learn a representation of the covariates that, under some assumptions, strips out bad controls but preserves sufficient information to adjust for confounding. Adjusting for the learned representation, rather than the covariates themselves, avoids the induced bias and provides valid causal inferences. We evaluate NICE on both synthetic and semi-synthetic data. When the covariates contain unknown collider variables and other bad controls, NICE performs better than adjusting for all the covariates.
Recently, invariant risk minimization (IRM) was proposed as a promising solution to address out-of-distribution (OOD) generalization. However, it is unclear when IRM should be preferred over the widely-employed empirical risk minimization (ERM) framework. In this work, we analyze both these frameworks from the perspective of sample complexity, thus taking a firm step towards answering this important question. We find that depending on the type of data generation mechanism, the two approaches might have very different finite sample and asymptotic behavior. For example, in the covariate shift setting we see that the two approaches not only arrive at the same asymptotic solution, but also have similar finite sample behavior with no clear winner. For other distribution shifts such as those involving confounders or anti-causal variables, however, the two approaches arrive at different asymptotic solutions where IRM is guaranteed to be close to the desired OOD solutions in the finite sample regime, while ERM is biased even asymptotically. We further investigate how different factors -- the number of environments, complexity of the model, and IRM penalty weight -- impact the sample complexity of IRM in relation to its distance from the OOD solutions
Empirical Risk Minimization (ERM) based machine learning algorithms have suffered from weak generalization performance on data obtained from out-of-distribution (OOD). To address this problem, Invariant Risk Minimization (IRM) objective was suggested to find invariant optimal predictor which is less affected by the changes in data distribution. However, even with such progress, IRMv1, the practical formulation of IRM, still shows performance degradation when there are not enough training data, and even fails to generalize to OOD, if the number of spurious correlations is larger than the number of environments. In this paper, to address such problems, we propose a novel meta-learning based approach for IRM. In this method, we do not assume the linearity of classifier for the ease of optimization, and solve ideal bi-level IRM objective with Model-Agnostic Meta-Learning (MAML) framework. Our method is more robust to the data with spurious correlations and can provide an invariant optimal classifier even when data from each distribution are scarce. In experiments, we demonstrate that our algorithm not only has better OOD generalization performance than IRMv1 and all IRM variants, but also addresses the weakness of IRMv1 with improved stability.
We introduce Invariant Risk Minimization (IRM), a learning paradigm to estimate invariant correlations across multiple training distributions. To achieve this goal, IRM learns a data representation such that the optimal classifier, on top of that data representation, matches for all training distributions. Through theory and experiments, we show how the invariances learned by IRM relate to the causal structures governing the data and enable out-of-distribution generalization.