Do you want to publish a course? Click here

Simeon -- Secure Federated Machine Learning Through Iterative Filtering

83   0   0.0 ( 0 )
 Added by Hye Young Paik
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Federated learning enables a global machine learning model to be trained collaboratively by distributed, mutually non-trusting learning agents who desire to maintain the privacy of their training data and their hardware. A global model is distributed to clients, who perform training, and submit their newly-trained model to be aggregated into a superior model. However, federated learning systems are vulnerable to interference from malicious learning agents who may desire to prevent training or induce targeted misclassification in the resulting global model. A class of Byzantine-tolerant aggregation algorithms has emerged, offering varying degrees of robustness against these attacks, often with the caveat that the number of attackers is bounded by some quantity known prior to training. This paper presents Simeon: a novel approach to aggregation that applies a reputation-based iterative filtering technique to achieve robustness even in the presence of attackers who can exhibit arbitrary behaviour. We compare Simeon to state-of-the-art aggregation techniques and find that Simeon achieves comparable or superior robustness to a variety of attacks. Notably, we show that Simeon is tolerant to sybil attacks, where other algorithms are not, presenting a key advantage of our approach.



rate research

Read More

Gradient-based training in federated learning is known to be vulnerable to faulty/malicious worker nodes, which are often modeled as Byzantine clients. Previous work either makes use of auxiliary data at parameter server to verify the received gradients or leverages statistic-based methods to identify and remove malicious gradients from Byzantine clients. In this paper, we acknowledge that auxiliary data may not always be available in practice and focus on the statistic-based approach. However, recent work on model poisoning attacks have shown that well-crafted attacks can circumvent most of existing median- and distance-based statistical defense methods, making malicious gradients indistinguishable from honest ones. To tackle this challenge, we show that the element-wise sign of gradient vector can provide valuable insight in detecting model poisoning attacks. Based on our theoretical analysis of state-of-the-art attack, we propose a novel approach, textit{SignGuard}, to enable Byzantine-robust federated learning through collaborative malicious gradient filtering. More precisely, the received gradients are first processed to generate relevant magnitude, sign, and similarity statistics, which are then collaboratively utilized by multiple, parallel filters to eliminate malicious gradients before final aggregation. We further provide theoretical analysis of SignGuard by quantifying its convergence with appropriate choice of learning rate and under non-IID training data. Finally, extensive experiments of image and text classification tasks - including MNIST, Fashion-MNIST, CIFAR-10, and AG-News - are conducted together with recently proposed attacks and defense strategies. The numerical results demonstrate the effectiveness and superiority of our proposed approach.
85 - Jinhyun So , Basak Guler , 2020
Federated learning is a distributed framework for training machine learning models over the data residing at mobile devices, while protecting the privacy of individual users. A major bottleneck in scaling federated learning to a large number of users is the overhead of secure model aggregation across many users. In particular, the overhead of the state-of-the-art protocols for secure model aggregation grows quadratically with the number of users. In this paper, we propose the first secure aggregation framework, named Turbo-Aggregate, that in a network with $N$ users achieves a secure aggregation overhead of $O(Nlog{N})$, as opposed to $O(N^2)$, while tolerating up to a user dropout rate of $50%$. Turbo-Aggregate employs a multi-group circular strategy for efficient model aggregation, and leverages additive secret sharing and novel coding techniques for injecting aggregation redundancy in order to handle user dropouts while guaranteeing user privacy. We experimentally demonstrate that Turbo-Aggregate achieves a total running time that grows almost linear in the number of users, and provides up to $40times$ speedup over the state-of-the-art protocols with up to $N=200$ users. Our experiments also demonstrate the impact of model size and bandwidth on the performance of Turbo-Aggregate.
Secure aggregation is a critical component in federated learning, which enables the server to learn the aggregate model of the users without observing their local models. Conventionally, secure aggregation algorithms focus only on ensuring the privacy of individual users in a single training round. We contend that such designs can lead to significant privacy leakages over multiple training rounds, due to partial user selection/participation at each round of federated learning. In fact, we empirically show that the conventional random user selection strategies for federated learning lead to leaking users individual models within number of rounds linear in the number of users. To address this challenge, we introduce a secure aggregation framework with multi-round privacy guarantees. In particular, we introduce a new metric to quantify the privacy guarantees of federated learning over multiple training rounds, and develop a structured user selection strategy that guarantees the long-term privacy of each user (over any number of training rounds). Our framework also carefully accounts for the fairness and the average number of participating users at each round. We perform several experiments on MNIST and CIFAR-10 datasets in the IID and the non-IID settings to demonstrate the performance improvement over the baseline algorithms, both in terms of privacy protection and test accuracy.
We consider the problem of reinforcing federated learning with formal privacy guarantees. We propose to employ Bayesian differential privacy, a relaxation of differential privacy for similarly distributed data, to provide sharper privacy loss bounds. We adapt the Bayesian privacy accounting method to the federated setting and suggest multiple improvements for more efficient privacy budgeting at different levels. Our experiments show significant advantage over the state-of-the-art differential privacy bounds for federated learning on image classification tasks, including a medical application, bringing the privacy budget below 1 at the client level, and below 0.1 at the instance level. Lower amounts of noise also benefit the model accuracy and reduce the number of communication rounds.
While rich medical datasets are hosted in hospitals distributed across the world, concerns on patients privacy is a barrier against using such data to train deep neural networks (DNNs) for medical diagnostics. We propose Dopamine, a system to train DNNs on distributed datasets, which employs federated learning (FL) with differentially-private stochastic gradient descent (DPSGD), and, in combination with secure aggregation, can establish a better trade-off between differential privacy (DP) guarantee and DNNs accuracy than other approaches. Results on a diabetic retinopathy~(DR) task show that Dopamine provides a DP guarantee close to the centralized training counterpart, while achieving a better classification accuracy than FL with parallel DP where DPSGD is applied without coordination. Code is available at https://github.com/ipc-lab/private-ml-for-health.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا