Essential forward weak KAM solution for the convex Hamilton-Jacobi equation


Abstract in English

For a convex, coercive continuous Hamiltonian on a compact closed Riemannian manifold $M$, we construct a unique forward weak KAM solution of [ H(x, d_x u)=c(H) ] by a vanishing discount approach, where $c(H)$ is the Ma~ne critical value. We also discuss the dynamical significance of such a special solution.

Download