No Arabic abstract
The DECam Local Volume Exploration survey (DELVE) is a 126-night survey program on the 4-m Blanco Telescope at the Cerro Tololo Inter-American Observatory in Chile. DELVE seeks to understand the characteristics of faint satellite galaxies and other resolved stellar substructures over a range of environments in the Local Volume. DELVE will combine new DECam observations with archival DECam data to cover ~15000 deg$^2$ of high-Galactic-latitude (|b| > 10 deg) southern sky to a 5$sigma$ depth of g,r,i,z ~ 23.5 mag. In addition, DELVE will cover a region of ~2200 deg$^2$ around the Magellanic Clouds to a depth of g,r,i ~ 24.5 mag and an area of ~135 deg$^2$ around four Magellanic analogs to a depth of g,i ~ 25.5 mag. Here, we present an overview of the DELVE program and progress to date. We also summarize the first DELVE public data release (DELVE DR1), which provides point-source and automatic aperture photometry for ~520 million astronomical sources covering ~5000 deg$^2$ of the southern sky to a 5$sigma$ point-source depth of g=24.3, r=23.9, i=23.3, and z=22.8 mag. DELVE DR1 is publicly available via the NOIRLab Astro Data Lab science platform.
We present an overview of the CMZoom survey and its first data release. CMZoom is the first blind, high-resolution survey of the Central Molecular Zone (CMZ; the inner 500 pc of the Milky Way) at wavelengths sensitive to the pre-cursors of high-mass stars. CMZoom is a 500-hour Large Program on the Submillimeter Array (SMA) that mapped at 1.3 mm all of the gas and dust in the CMZ above a molecular hydrogen column density of 10^23 cm^-2 at a resolution of ~3 (0.1 pc). In this paper, we focus on the 1.3 mm dust continuum and its data release, but also describe CMZoom spectral line data which will be released in a forthcoming publication. While CMZoom detected many regions with rich and complex substructure, its key result is an overall deficit in compact substructures on 0.1 - 2 pc scales (the compact dense gas fraction: CDGF). In comparison with clouds in the Galactic disk, the CDGF in the CMZ is substantially lower, despite having much higher average column densities. CMZ clouds with high CDGFs are well-known sites of active star formation. The inability of most gas in the CMZ to form compact substructures is likely responsible for the dearth of star formation in the CMZ, surprising considering its high density. The factors responsible for the low CDGF are not yet understood but are plausibly due to the extreme environment of the CMZ, having far-reaching ramifications for our understanding of the star formation process across the cosmos.
We report the discovery of two ultra-faint stellar systems found in early data from the DECam Local Volume Exploration survey (DELVE). The first system, Centaurus I (DELVE J1238-4054), is identified as a resolved overdensity of old and metal-poor stars with a heliocentric distance of ${rm D}_{odot} = 116.3_{-0.6}^{+0.6}$ kpc, a half-light radius of $r_h = 2.3_{-0.3}^{+0.4}$ arcmin, an age of $tau > 12.85$ Gyr, a metallicity of $Z = 0.0002_{-0.0002}^{+0.0001}$, and an absolute magnitude of $M_V = -5.55_{-0.11}^{+0.11}$ mag. This characterization is consistent with the population of ultra-faint satellites, and confirmation of this system would make Centaurus I one of the brightest recently discovered ultra-faint dwarf galaxies. Centaurus I is detected in Gaia DR2 with a clear and distinct proper motion signal, confirming that it is a real association of stars distinct from the Milky Way foreground; this is further supported by the clustering of blue horizontal branch stars near the centroid of the system. The second system, DELVE 1 (DELVE J1630-0058), is identified as a resolved overdensity of stars with a heliocentric distance of ${rm D}_{odot} = 19.0_{-0.6}^{+0.5} kpc$, a half-light radius of $r_h = 0.97_{-0.17}^{+0.24}$ arcmin, an age of $tau = 12.5_{-0.7}^{+1.0}$ Gyr, a metallicity of $Z = 0.0005_{-0.0001}^{+0.0002}$, and an absolute magnitude of $M_V = -0.2_{-0.6}^{+0.8}$ mag, consistent with the known population of faint halo star clusters. Given the low number of probable member stars at magnitudes accessible with Gaia DR2, a proper motion signal for DELVE 1 is only marginally detected. We compare the spatial position and proper motion of both Centaurus I and DELVE 1 with simulations of the accreted satellite population of the Large Magellanic Cloud (LMC) and find that neither is likely to be associated with the LMC.
The LOFAR Two-metre Sky Survey (LoTSS) is an ongoing sensitive, high-resolution 120-168MHz survey of the entire northern sky for which observations are now 20% complete. We present our first full-quality public data release. For this data release 424 square degrees, or 2% of the eventual coverage, in the region of the HETDEX Spring Field (right ascension 10h45m00s to 15h30m00s and declination 45$^circ$00$$00$$ to 57$^circ$00$$00$$) were mapped using a fully automated direction-dependent calibration and imaging pipeline that we developed. A total of 325,694 sources are detected with a signal of at least five times the noise, and the source density is a factor of $sim 10$ higher than the most sensitive existing very wide-area radio-continuum surveys. The median sensitivity is S$_{rm 144 MHz} = 71,mu$Jy beam$^{-1}$ and the point-source completeness is 90% at an integrated flux density of 0.45mJy. The resolution of the images is 6$$ and the positional accuracy is within 0.2$$. This data release consists of a catalogue containing location, flux, and shape estimates together with 58 mosaic images that cover the catalogued area. In this paper we provide an overview of the data release with a focus on the processing of the LOFAR data and the characteristics of the resulting images. In two accompanying papers we provide the radio source associations and deblending and, where possible, the optical identifications of the radio sources together with the photometric redshifts and properties of the host galaxies. These data release papers are published together with a further $sim$20 articles that highlight the scientific potential of LoTSS.
The Green Bank Telescope (GBT) Diffuse Ionized Gas Survey (GDIGS) traces ionized gas in the Galactic midplane by measuring $4-8$GHz radio recombination line (RRL) emission. The nominal survey zone is $32.3^{circ}> l >-5^{circ}$, $|b|<0.5^{circ}$, but coverage extends above and below the plane in select fields, and additionally includes the areas around W47 ($l simeq 37.5^{circ}$) and W49 ($l simeq 43^{circ}$). GDIGS simultaneously observes 22 Hn$alpha$ (15 usable), 25 Hn$beta$ (18 usable), and 8 Hn$gamma$ RRLs (all usable), as well as multiple molecular line transitions (including of H$_2^{13}$CO, H$_2$CO, and CH$_3$OH). Here, we describe the GDIGS survey parameters and characterize the RRL data, focusing primarily on the Hn$alpha$ data. We produce sensitive data cubes by averaging the usable RRLs, after first smoothing to a common spectral resolution of 0.5km/s and a spatial resolution of 2.65 for Hn$alpha$, 2.62 for Hn$beta$, and 2.09 for Hn$gamma$. The average spectral noise per spaxel in the hna data cubes is $sim!10$mK ($sim!5$mJy/beam). This sensitivity allows GDIGS to detect RRLs from plasma throughout the inner Galaxy. The GDIGS Hn$alpha$ data are sensitive to emission measures $EM gtrsim 1100$cm$^{-6}$pc, which corresponds to a mean electron density $langle n_e rangle gtrsim 30$cm$^{-3}$ for a 1pc path length or $langle n_e rangle gtrsim 1$cm$^{-3}$ for a 1kpc path length.
The SEDIGISM (Structure, Excitation and Dynamics of the Inner Galactic Interstellar Medium) survey used the APEX telescope to map 84 deg^2 of the Galactic plane between l = -60 deg and l = +31 deg in several molecular transitions, including 13CO(2-1) and C18O(2-1), thus probing the moderately dense (~10^3 cm^-3) component of the interstellar medium. With an angular resolution of 30 and a typical 1-sigma sensitivity of 0.8-1.0 K at 0.25 km/s velocity resolution, it gives access to a wide range of structures, from individual star-forming clumps to giant molecular clouds and complexes. The coverage includes a good fraction of the first and fourth Galactic quadrants, allowing us to constrain the large scale distribution of cold molecular gas in the inner Galaxy. In this paper we provide an updated overview of the full survey and the data reduction procedures used. We also assess the quality of these data and describe the data products that are being made publicly available as part of this first data release (DR1). We present integrated maps and position-velocity maps of the molecular gas and use these to investigate the correlation between the molecular gas and the large scale structural features of the Milky Way such as the spiral arms, Galactic bar and Galactic centre. We find that approximately 60 per cent of the molecular gas is associated with the spiral arms and these appear as strong intensity peaks in the derived Galactocentric distribution. We also find strong peaks in intensity at specific longitudes that correspond to the Galactic centre and well known star forming complexes, revealing that the 13CO emission is concentrated in a small number of complexes rather than evenly distributed along spiral arms.