No Arabic abstract
We propose the study of the inclusive hadroproduction of a heavy-flavored jet in association with a light jet, as a probe channel of strong interactions at high energies. We build up a hybrid factorization that encodes genuine high-energy effects, provided by a partial next-to-leading BFKL resummation, inside the standard collinear structure of the cross section. We present a detailed analysis of different distributions, shaped on kinematic ranges typical of experimental analyses at the Large Hadron Collider, and differential in rapidity, azimuthal angle and transverse momentum. The fair stability that these distributions exhibit under higher-order corrections motivates our interest toward future studies. Here, the hybrid factorization could help to deepen our understanding of heavy-flavor physics in wider kinematic ranges, like the ones accessible at the Electron-Ion Collider.
We propose the inclusive hadroproduction of a heavy-light dijet system, as a new channel for the investigation of high energy QCD. We build up a hybrid factorization that incorporates a partial next-to-leading BFKL resummation inside the standard collinear description of observables. We present a detailed analysis of different observables: cross-section summed over azimuthal angles and differential in rapidity and azimuthal distribution. The stability that these distributions show under higher-order corrections motivates our interest in future studies, doable at new generation colliding machines.
We study inclusive production of doubly heavy baryon at a $e^+e^-$ collider and at hadron colliders through fragmentation. We study the production by factorizing nonpertubative- and perturbative effects. In our approach the production can be thought as a two-step process: A pair of heavy quarks can be produced perturbatively and then the pair is transformed into the baryon. The transformation is nonperturbative. Since a heavy quark moves with a small velocity in the baryon in its rest frame, we can use NRQCD to describe the transformation and perform a systematic expansion in the small velocity. At the leading order we find that the baryon can be formed from two states of the heavy-quark pair, one state is with the pair in $^3S_1$ state and in color ${bf bar 3}$, another is with the pair in $^1S_0$ state and in color ${bf 6}$. Two matrix elements are defined for the transformation from the two states, their perturbative coefficients in the contribution to the cross-section at a $e^+e^-$ collider and to the function of heavy quark fragmentation are calculated. Our approach is different than previous approaches where only the pair in $^3S_1$ state and in color ${bf bar 3}$ is taken into account. Numerical results for $e^+e^-$ colliders at the two $B$-factories and for hadronic colliders LHC and Tevatron are given.
We analyse the origin of dramatic breakdown of diffractive factorisation, observed in single-diffractive (SD) dijet production in hadronic collisions. One of the sources is the application of the results of measurements of the diagonal diffractive DIS to the off-diagonal hadronic diffractive process. The suppression caused by a possibility of inelastic interaction with the spectator partons is calculated at the amplitude level, differently from the usual probabilistic description. It turns out, however, that interaction with the spectator partons not only suppresses the SD cross section, but also gives rise to the main mechanism of SD dijet production, which is another important source of factorization failure. Our parameter-free calculations of SD-to-inclusive cross section ratio, performed in the dipole representation, agrees with the corresponding CDF Tevatron (Run II) data at $sqrt{s}=1.96$ TeV in the relevant kinematic regions. The energy and hard scale dependences demonstrate a trend, opposite to the factorisation-based expectations, similarly to the effect observed earlier in diffractive Abelian radiation.
We investigate the effect of soft gluon radiations on the azimuthal angle correlation between the total and relative momenta of two jets in inclusive and exclusive dijet processes. We show that the final state effect induces a sizable $cos(2phi)$ anisotropy due to gluon emissions near the jet cones. The phenomenological consequences of this observation are discussed for various collider experiments, including diffractive processes in ultraperipheral $pA$ and $AA$ collisions, inclusive and diffractive dijet production at the EIC, and inclusive dijet in $pp$ and $AA$ collisions at the LHC.
We study a transverse momentum dependent (TMD) factorization framework for the processes of di-jet and heavy meson pair production in deep-inelastic-scattering in an electron-proton collider, considering the measurement of the transverse momentum imbalance of the two hard probes in the Breit frame. For the factorization theorem we employ soft-collinear and boosted-heavy-quark effective field theories. The factorized cross-section for both processes is sensitive to gluon unpolarized and linearly polarized TMD distributions and requires the introduction of a new soft function. We calculate the new soft function here at one loop, regulating rapidity divergences with the $delta$-regulator. In addition, using a factorization consistency relation and a universality argument regarding the heavy-quark jet function, we obtain the anomalous dimension of the new soft function at two loops.