Universal spin squeezing from the tower of states of $U(1)$-symmetric spin Hamiltonians


Abstract in English

Spin squeezing -- a central resource for quantum metrology -- results from the non-linear, entangling evolution of an initially factorized spin state. Here we show that universal squeezing dynamics is generated by a very large class of $S=1/2$ spin Hamiltonians with axial symmetry, in relationship with the existence of a peculiar structure of the low-lying Hamiltonian eigenstates -- the so-called Andersons tower of states. Such states are fundamentally related to the appearance of spontaneous symmetry breaking in quantum systems, and they are parametrically close to the eigenstates of a planar rotor (Dicke states), in that they feature an anomalously large value of the total angular momentum. We show that, starting from a coherent spin state, a generic $U(1)$-symmetric Hamiltonian featuring the Andersons tower of states generates the same squeezing evolution at short times as the one governed by the paradigmatic one-axis-twisting (or planar rotor) model of squeezing dynamics. The full squeezing evolution is seemingly reproduced for interactions decaying with distance $r$ as $r^{-alpha}$ when $alpha < 5d/3$ in $d$ dimensions. Our results connect quantum simulation with quantum metrology by unveiling the squeezing power of a large variety of Hamiltonian dynamics that are currently implemented by different quantum simulation platforms.

Download