No Arabic abstract
Best match graphs (BMGs) are a class of colored digraphs that naturally appear in mathematical phylogenetics and can be approximated with the help of similarity measures between gene sequences, albeit not without errors. The corresponding graph editing problem can be used as a means of error correction. Since the arc set modification problems for BMGs are NP-complete, efficient heuristics are needed if BMGs are to be used for the practical analysis of biological sequence data. Since BMGs have a characterization in terms of consistency of a certain set of rooted triples, we consider heuristics that operate on triple sets. As an alternative, we show that there is a close connection to a set partitioning problem that leads to a class of top-down recursive algorithms that are similar to Ahos supertree algorithm and give rise to BMG editing algorithms that are consistent in the sense that they leave BMGs invariant. Extensive benchmarking shows that community detection algorithms for the partitioning steps perform best for BMG editing.
Best match graphs (BMGs) are vertex-colored directed graphs that were introduced to model the relationships of genes (vertices) from different species (colors) given an underlying evolutionary tree that is assumed to be unknown. In real-life applications, BMGs are estimated from sequence similarity data. Measurement noise and approximation errors usually result in empirically determined graphs that in general violate characteristic properties of BMGs. The arc modification problems for BMGs aim at correcting such violations and thus provide a means to improve the initial estimates of best match data. We show here that the arc deletion, arc completion and arc editing problems for BMGs are NP-complete and that they can be formulated and solved as integer linear programs. To this end, we provide a novel characterization of BMGs in terms of triples (binary trees on three leaves) and a characterization of BMGs with two colors in terms of forbidden subgraphs.
Best match graphs (BMGs) are vertex-colored digraphs that naturally arise in mathematical phylogenetics to formalize the notion of evolutionary closest genes w.r.t. an a priori unknown phylogenetic tree. BMGs are explained by unique least resolved trees. We prove that the property of a rooted, leaf-colored tree to be least resolved for some BMG is preserved by the contraction of inner edges. For the special case of two-colored BMGs, this leads to a characterization of the least resolved trees (LRTs) of binary-explainable trees and a simple, polynomial-time algorithm for the minimum cardinality completion of the arc set of a BMG to reach a BMG that can be explained by a binary tree.
Genome-scale orthology assignments are usually based on reciprocal best matches. In the absence of horizontal gene transfer (HGT), every pair of orthologs forms a reciprocal best match. Incorrect orthology assignments therefore are always false positives in the reciprocal best match graph. We consider duplication/loss scenarios and characterize unambiguous false-positive (u-fp) orthology assignments, that is, edges in the best match graphs (BMGs) that cannot correspond to orthologs for any gene tree that explains the BMG. Moreover, we provide a polynomial-time algorithm to identify all u-fp orthology assignments in a BMG. Simulations show that at least $75%$ of all incorrect orthology assignments can be detected in this manner. All results rely only on the structure of the BMGs and not on any a priori knowledge about underlying gene or species trees.
Quasi-median graphs are a tool commonly used by evolutionary biologists to visualise the evolution of molecular sequences. As with any graph, a quasi-median graph can contain cut vertices, that is, vertices whose removal disconnect the graph. These vertices induce a decomposition of the graph into blocks, that is, maximal subgraphs which do not contain any cut vertices. Here we show that the special structure of quasi-median graphs can be used to compute their blocks without having to compute the whole graph. In particular we present an algorithm that, for a collection of $n$ aligned sequences of length $m$, can compute the blocks of the associated quasi-median graph together with the information required to correctly connect these blocks together in run time $mathcal O(n^2m^2)$, independent of the size of the sequence alphabet. Our primary motivation for presenting this algorithm is the fact that the quasi-median graph associated to a sequence alignment must contain all most parsimonious trees for the alignment, and therefore precomputing the blocks of the graph has the potential to help speed up any method for computing such trees.
A rooted tree $T$ with vertex labels $t(v)$ and set-valued edge labels $lambda(e)$ defines maps $delta$ and $varepsilon$ on the pairs of leaves of $T$ by setting $delta(x,y)=q$ if the last common ancestor $text{lca}(x,y)$ of $x$ and $y$ is labeled $q$, and $min varepsilon(x,y)$ if $minlambda(e)$ for at least one edge $e$ along the path from $text{lca}(x,y)$ to $y$. We show that a pair of maps $(delta,varepsilon)$ derives from a tree $(T,t,lambda)$ if and only if there exists a common refinement of the (unique) least-resolved vertex labeled tree $(T_{delta},t_{delta})$ that explains $delta$ and the (unique) least resolved edge labeled tree $(T_{varepsilon},lambda_{varepsilon})$ that explains $varepsilon$ (provided both trees exist). This result remains true if certain combinations of labels at incident vertices and edges are forbidden.