Do you want to publish a course? Click here

Study of Temporal and Spectral variability for Blazar PKS 1830-211 with Multi-Wavelength Data

76   0   0.0 ( 0 )
 Added by Jayant Abhir
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

A study of the gravitationally lensed blazar PKS 1830-211 was carried out using multi waveband data collected by Fermi-LAT, Swift-XRT and Swift-UVOT telescopes between MJD 58400 to MJD 58800 (9 Oct 2018 to 13 Nov 2019). Flaring states were identified by analysing the gamma-ray light curve. Simultaneous multi-waveband SED were obtained for those flaring periods. A cross-correlation analysis of the multi-waveband data was carried out, which suggested a common origin of the gamma-ray and X-ray emission. The broadband emission mechanism was studied by modelling the SED using a leptonic model. Physical parameters of the blazar were estimated from the broadband SED modelling. The blazar PKS 1830-211 is gravitationally lensed by at least two galaxies and has been extensively studied in the literature because of this property. The self-correlation of the gamma-ray light curve was studied to identify the signature of lensing, but no conclusive evidence of correlation was found at the expected time delay of 26 days.



rate research

Read More

We report the extraordinary gamma-ray activity (E>100 MeV) of the gravitationally lensed blazar PKS 1830-211 (z=2.507) detected by AGILE between October and November 2010. The source experienced on October 14 a flux increase of a factor of ~ 12 with respect to its average value and kept brightest at this flux level (~ 500 x 10^{-8} ph cm^-2 sec^-1) for about 4 days. The 1-month gamma-ray light curve across the flare showed a mean flux F(E>100 MeV)= 200 x 10^{-8} ph cm^-2 sec^-1, which resulted in an enhancement by a factor of 4 with respect to the average value. Following the gamma-ray flare, the source was observed in NIR-Optical energy bands at the Cerro Tololo Inter-American Observatory and in X-rays by Swift/XRT and INTEGRAL/IBIS. The main result of these multifrequency observations is that the large variability observed in gamma-rays has not a significant counterpart at lower frequencies: no variation greater than a factor of ~ 1.5 resulted in NIR and X-ray energy bands. PKS 1830-211 is then a good gamma-ray only flaring blazar showing substantial variability only above 10-100 MeV. We discuss the theoretical implications of our findings.
Blazars are highly variable, radio-loud active galactic nuclei with jets oriented at a small angle to the line of sight. The observed emission of these sources covers the whole electromagnetic spectrum from radio frequencies up to the high or even very high energy gamma-ray range. To understand the complex physics of these objects, multi-wavelength observations and studies on the variability and correlations between different wavelengths are therefore essential. The long-term multi-frequency observations of PKS 0048-097 are analysed here to investigate its spectral and temporal features. The studies includes nine years of observations of the blazar, which is well studied in the optical and radio domain, but not in the other frequencies. Multi-wavelength data collected with OVRO, KAIT, Catalina, Swift/UVOT, Swift/XRT and Fermi/LAT were studied. The performed analysis revealed strong variability in all wavelengths that is most clearly manifested in the X-ray range. The correlation studies do not exhibit any relation between different wavelengths, except for the very strong positive correlation between the optical emission in V and R bands.
The Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope routinely detects the highly dust-absorbed, reddened, and MeV-peaked flat spectrum radio quasar PKS 1830-211 (z=2.507). Its apparent isotropic gamma-ray luminosity (E>100 MeV) averaged over $sim$ 3 years of observations and peaking on 2010 October 14/15 at 2.9 X 10^{50} erg s^{-1}, makes it among the brightest high-redshift Fermi blazars. No published model with a single lens can account for all of the observed characteristics of this complex system. Based on radio observations, one expects time delayed variability to follow about 25 days after a primary flare, with flux about a factor 1.5 less. Two large gamma-ray flares of PKS 1830-211 have been detected by the LAT in the considered period and no substantial evidence for such a delayed activity was found. This allows us to place a lower limit of about 6 on the gamma rays flux ratio between the two lensed images. Swift XRT observations from a dedicated Target of Opportunity program indicate a hard spectrum and with no significant correlation of X-ray flux with the gamma-ray variability. The spectral energy distribution can be modeled with inverse Compton scattering of thermal photons from the dusty torus. The implications of the LAT data in terms of variability, the lack of evident delayed flare events, and different radio and gamma-ray flux ratios are discussed. Microlensing effects, absorption, size and location of the emitting regions, the complex mass distribution of the system, an energy-dependent inner structure of the source, and flux suppression by the lens galaxy for one image path may be considered as hypotheses for understanding our results.
Decade-long monitoring of blazars at optical and infrared (OIR) wavelengths with the Small and Moderate Aperture Research Telescope System (SMARTS) in Chile and in $gamma$-rays with the Fermi Large Area Telescope (LAT) has enabled the systematic study of their multi-wavelength long-term variability. In this work we investigate, from a theoretical perspective, the long-term variability properties of blazar emission by introducing an observationally motivated time-dependence to four main parameters of the one-zone leptonic model: injection luminosity of relativistic electrons, strength of magnetic field, Doppler factor, and external photon field luminosity. For the first time, we use both the probability density function and the power spectral density of the 10 year-long Fermi-LAT light curves to create variation patterns for the model parameters. Using as test beds two bright blazars from the SMARTS sample (PKS 2155-304 and 3C 273), we compute 10 year-long OIR, X-ray, and $gamma$-ray model light curves for different varying parameters. We compare the findings of our theoretical investigation with multi-wavelength observations using various measures of variability. While no single-varying parameter simulation can explain all multi-wavelength variability properties, changes in the electron luminosity and external radiation field in PKS 2155-304 and 3C 273, respectively, can account for most of them. Our results motivate future time-dependent studies with coupling between two or more physical parameters to describe the multi-wavelength long-term blazar variability.
We report on an analysis of X- and $gamma$-ray observations of PKS 1830-211, based on the long-term campaigns carried out by emph{INTEGRAL} and COMPTEL. The emph{INTEGRAL} data currently available present a $33sigma$ significance detection in the 20-100 keV band, while the COMPTEL 6-years data provide a $5.2sigma$ significance detection in the 1-3 MeV energy band. At hard X-rays, emph{INTEGRAL} and supplementary emph{SWIFT} observations show flux variability on timescales of months. At $gamma$-rays, the source shows persistent emission over years. The hard X-ray spectrum is well represented by a power-law model, with $Gamma sim 1.3$ in the 20-250 keV band. This photon index is well consistent with the previous report of $Gamma sim 1.3$ obtained at $E > 3.5$ keV from the best fit of emph{XMM-Newton} data with a broken power law model. The joint emph{XMM-Newton}/emph{INTEGRAL} spectrum presented here is then fit with a broken power-law model and the parameters are refined compared to the previous. The results show the photon index changes from $sim 1.0$ to $sim 1.3$ at a break energy $sim 4$ keV. At MeV energies, the spectrum softens to $Gamma sim 2.2$. These results, together with the EGRET measurement at $E ge 100$ MeV, constitute a broad-band spectrum containing the peak of the power output at MeV energies, similar to most high-luminosity $gamma$-ray blazars. The measured spectral characterstics are then discussed in the framework of the gravitational lens effects.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا