Fractal, logarithmic and volume-law entangled non-thermal steady states via spacetime duality


Abstract in English

The extension of many-body quantum dynamics to the non-unitary domain has led to a series of exciting developments, including new out-of-equilibrium entanglement phases and phase transitions. We show how a duality transformation between space and time on one hand, and unitarity and non-unitarity on the other, can be used to realize steady state phases of non-unitary dynamics that exhibit a rich variety of behavior in their entanglement scaling with subsystem size -- from logarithmic to extensive to emph{fractal}. We show how these outcomes in non-unitary circuits (that are spacetime-dual to unitary circuits) relate to the growth of entanglement in time in the corresponding unitary circuits, and how they differ, through an exact mapping to a problem of unitary evolution with boundary decoherence, in which information gets radiated away from one edge of the system. In spacetime-duals of chaotic unitary circuits, this mapping allows us to uncover a non-thermal volume-law entangled phase with a logarithmic correction to the entropy distinct from other known examples. Most notably, we also find novel steady state phases with emph{fractal} entanglement scaling, $S(ell) sim ell^{alpha}$ with tunable $0 < alpha < 1$ for subsystems of size $ell$ in one dimension. These fractally entangled states add a qualitatively new entry to the families of many-body quantum states that have been studied as energy eigenstates or dynamical steady states, whose entropy almost always displays either area-law, volume-law or logarithmic scaling. We also present an experimental protocol for preparing these novel steady states with only a very limited amount of postselection via a type of teleportation between spacelike and timelike slices of quantum circuits.

Download