Using response theory, we calculate the charge-current vortex generated by spin pumping at a point-like contact in a system with Rashba spin-orbit coupling. We discuss the spatial profile of the current density for finite temperature and for the zero-temperature limit. The main observation is that the Rashba spin precession leads to a charge current that oscillates as a function of the distance from the spin-pumping source, which is confirmed by numerical simulations. In our calculations, we consider a Rashba model on a square lattice, for which we first review the basic properties related to charge and spin transport. In particular, we define the charge- and spin-current operators for the tight-binding Hamiltonian as the currents coupled linearly with the U(1) and SU(2) gauge potentials, respectively. By analogy to the continuum model, the spin-orbit-coupling Hamiltonian on the lattice is then introduced as the generator of the spin current.