No Arabic abstract
In this paper, a thermal-dynamical consistent model for mass transfer across permeable moving interfaces is proposed by using the energy variation method. We consider a restricted diffusion problem where the flux across the interface depends on its conductance and the difference of the concentration on each side. The diffusive interface phase-field framework used here has several advantages over the sharp interface method. First of all, explicit tracking of the interface is no longer necessary. Secondly, the interfacial condition can be incorporated with a variable diffusion coefficient. A detailed asymptotic analysis confirms the diffusive interface model converges to the existing sharp interface model as the interface thickness goes to zero. A decoupled energy stable numerical scheme is developed to solve this system efficiently. Numerical simulations first illustrate the consistency of theoretical results on the sharp interface limit. Then a convergence study and energy decay test are conducted to ensure the efficiency and stability of the numerical scheme. To illustrate the effectiveness of our phase-field approach, several examples are provided, including a study of a two-phase mass transfer problem where drops with deformable interfaces are suspended in a moving fluid.
We introduce a phase-field method for continuous modeling of cracks with frictional contacts. Compared with standard discrete methods for frictional contacts, the phase-field method has two attractive features: (1) it can represent arbitrary crack geometry without an explicit function or basis enrichment, and (2) it does not require an algorithm for imposing contact constraints. The first feature, which is common in phase-field models of fracture, is attained by regularizing a sharp interface geometry using a surface density functional. The second feature, which is a unique advantage for contact problems, is achieved by a new approach that calculates the stress tensor in the regularized interface region depending on the contact condition of the interface. Particularly, under a slip condition, this approach updates stress components in the slip direction using a standard contact constitutive law, while making other stress components compatible with stress in the bulk region to ensure non-penetrating deformation in other directions. We verify the proposed phase-field method using stationary interface problems simulated by discrete methods in the literature. Subsequently, by allowing the phase field to evolve according to brittle fracture theory, we demonstrate the proposed methods capability for modeling crack growth with frictional contact.
Mineral precipitation and dissolution processes in a porous medium can alter the structure of the medium at the scale of pores. Such changes make numerical simulations a challenging task as the geometry of the pores changes in time in an apriori unknown manner. To deal with such aspects, we here adopt a two-scale phase-field model, and propose a robust scheme for the numerical approximation of the solution. The scheme takes into account both the scale separation in the model, as well as the non-linear character of the model. After proving the convergence of the scheme, an adaptive two-scale strategy is incorporated, which improves the efficiency of the simulations. Numerical tests are presented, showing the efficiency and accuracy of the scheme in the presence of anisotropies and heterogeneities.
We consider a phase-field fracture propagation model, which consists of two (nonlinear) coupled partial differential equations. The first equation describes the displacement evolution, and the second is a smoothed indicator variable, describing the crack position. We propose an iterative scheme, the so-called $L$-scheme, with a dynamic update of the stabilization parameters during the iterations. Our algorithmic improvements are substantiated with two numerical tests. The dynamic adjustments of the stabilization parameters lead to a significant reduction of iteration numbers in comparison to constant stabilization values.
A thermodynamically consistent phase-field model is introduced for simulating motion and shape transformation of vesicles under flow conditions. In particular, a general slip boundary condition is used to describe the interaction between vesicles and the wall of the fluid domain. A second-order accurate in both space and time C0 finite element method is proposed to solve the model governing equations. Various numerical tests confirm the convergence, energy stability, and conservation of mass and surface area of cells of the proposed scheme. Vesicles with different mechanical properties are also used to explain the pathological risk for patients with sickle cell disease.
In this paper, we focus on modeling and simulation of two-phase flow with moving contact lines and variable density. A thermodynamically consistent phase-field model with General Navier Boundary Condition is developed based on the concept of quasi-incompressibility and the energy variational method. Then a mass conserving and energy stable C0 finite element scheme is developed to solve the PDE system. Various numerical simulation results show that the proposed schemes are mass conservative, energy stable and the 2nd order for P1 element and 3rd order for P2 element convergence rate in the sense of L2 norm.