Do you want to publish a course? Click here

The characteristics of cycle-nodes-ratio and its application to network classification

217   0   0.0 ( 0 )
 Added by WenJun Zhang
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Cycles, which can be found in many different kinds of networks, make the problems more intractable, especially when dealing with dynamical processes on networks. On the contrary, tree networks in which no cycle exists, are simplifications and usually allow for analyticity. There lacks a quantity, however, to tell the ratio of cycles which determines the extent of network being close to tree networks. Therefore we introduce the term Cycle Nodes Ratio (CNR) to describe the ratio of number of nodes belonging to cycles to the number of total nodes, and provide an algorithm to calculate CNR. CNR is studied in both network models and real networks. The CNR remains unchanged in different sized Erdos Renyi (ER) networks with the same average degree, and increases with the average degree, which yields a critical turning point. The approximate analytical solutions of CNR in ER networks are given, which fits the simulations well. Furthermore, the difference between CNR and two-core ratio (TCR) is analyzed. The critical phenomenon is explored by analysing the giant component of networks. We compare the CNR in network models and real networks, and find the latter is generally smaller. Combining the coarse-graining method can distinguish the CNR structure of networks with high average degree. The CNR is also applied to four different kinds of transportation networks and fungal networks, which give rise to different zones of effect. It is interesting to see that CNR is very useful in network recognition of machine learning.



rate research

Read More

We give an approximate solution to the difficult inverse problem of inferring the topology of an unknown network from given time-dependent signals at the nodes. For example, we measure signals from individual neurons in the brain, and infer how they are inter-connected. We use Maximum Caliber as an inference principle. The combinatorial challenge of high-dimensional data is handled using two different approximations to the pairwise couplings. We show two proofs of principle: in a nonlinear genetic toggle switch circuit, and in a toy neural network.
Stars and cycles are basic structures in network construction. The former has been well studied in network analysis, while the latter attracted rare attention. A node together with its neighbors constitute a neighborhood star-structure where the basic assumption is two nodes interact through their direct connection. A cycle is a closed loop with many nodes who can influence each other even without direct connection. Here we show their difference and relationship in understanding network structure and function. We define two cycle-based node characteristics, namely cycle number and cycle ratio, which can be used to measure a nodes importance. Numerical analyses on six disparate real networks suggest that the nodes with higher cycle ratio are more important to network connectivity, while cycle number can better quantify a node influence of cycle-based spreading than the common star-based node centralities. We also find that an ordinary network can be converted into a hypernetwork by considering its basic cycles as hyperedges, meanwhile, a new matrix called the cycle number matrix is captured. We hope that this paper can open a new direction of understanding both local and global structures of network and its function.
135 - Tao Zhou , Jie Ren , Matus Medo 2007
The one-mode projecting is extensively used to compress the bipartite networks. Since the one-mode projection is always less informative than the bipartite representation, a proper weighting method is required to better retain the original information. In this article, inspired by the network-based resource-allocation dynamics, we raise a weighting method, which can be directly applied in extracting the hidden information of networks, with remarkably better performance than the widely used global ranking method as well as collaborative filtering. This work not only provides a creditable method in compressing bipartite networks, but also highlights a possible way for the better solution of a long-standing challenge in modern information science: How to do personal recommendation?
We have recently introduced the ``thermal optimal path (TOP) method to investigate the real-time lead-lag structure between two time series. The TOP method consists in searching for a robust noise-averaged optimal path of the distance matrix along which the two time series have the greatest similarity. Here, we generalize the TOP method by introducing a more general definition of distance which takes into account possible regime shifts between positive and negative correlations. This generalization to track possible changes of correlation signs is able to identify possible transitions from one convention (or consensus) to another. Numerical simulations on synthetic time series verify that the new TOP method performs as expected even in the presence of substantial noise. We then apply it to investigate changes of convention in the dependence structure between the historical volatilities of the USA inflation rate and economic growth rate. Several measures show that the new TOP method significantly outperforms standard cross-correlation methods.
261 - A.P. Masucci , G.J. Rodgers 2007
We study the directed and weighted network in which the wards of London are vertices and two vertices are connected whenever there is at least one person commuting to work from a ward to another. Remarkably the in-strength and in-degree distribution tail is a power law with exponent around -2, while the out-strength and out-degree distribution tail is exponential. We propose a simple square lattice model to explain the observed empirical behaviour.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا