No Arabic abstract
Omnidirectional video is an essential component of Virtual Reality. Although various methods have been proposed to generate content that can be viewed with six degrees of freedom (6-DoF), existing systems usually involve complex depth estimation, image in-painting or stitching pre-processing. In this paper, we propose a system that uses a 3D ConvNet to generate a multi-sphere images (MSI) representation that can be experienced in 6-DoF VR. The system utilizes conventional omnidirectional VR camera footage directly without the need for a depth map or segmentation mask, thereby significantly simplifying the overall complexity of the 6-DoF omnidirectional video composition. By using a newly designed weighted sphere sweep volume (WSSV) fusing technique, our approach is compatible with most panoramic VR camera setups. A ground truth generation approach for high-quality artifact-free 6-DoF contents is proposed and can be used by the research and development community for 6-DoF content generation.
When watching omnidirectional images (ODIs), subjects can access different viewports by moving their heads. Therefore, it is necessary to predict subjects head fixations on ODIs. Inspired by generative adversarial imitation learning (GAIL), this paper proposes a novel approach to predict saliency of head fixations on ODIs, named SalGAIL. First, we establish a dataset for attention on ODIs (AOI). In contrast to traditional datasets, our AOI dataset is large-scale, which contains the head fixations of 30 subjects viewing 600 ODIs. Next, we mine our AOI dataset and determine three findings: (1) The consistency of head fixations are consistent among subjects, and it grows alongside the increased subject number; (2) The head fixations exist with a front center bias (FCB); and (3) The magnitude of head movement is similar across subjects. According to these findings, our SalGAIL approach applies deep reinforcement learning (DRL) to predict the head fixations of one subject, in which GAIL learns the reward of DRL, rather than the traditional human-designed reward. Then, multi-stream DRL is developed to yield the head fixations of different subjects, and the saliency map of an ODI is generated via convoluting predicted head fixations. Finally, experiments validate the effectiveness of our approach in predicting saliency maps of ODIs, significantly better than 10 state-of-the-art approaches.
Some image restoration tasks like demosaicing require difficult training samples to learn effective models. Existing methods attempt to address this data training problem by manually collecting a new training dataset that contains adequate hard samples, however, there are still hard and simple areas even within one single image. In this paper, we present a data-driven approach called PatchNet that learns to select the most useful patches from an image to construct a new training set instead of manual or random selection. We show that our simple idea automatically selects informative samples out from a large-scale dataset, leading to a surprising 2.35dB generalisation gain in terms of PSNR. In addition to its remarkable effectiveness, PatchNet is also resource-friendly as it is applied only during training and therefore does not require any additional computational cost during inference.
We introduce a method to convert stereo 360{deg} (omnidirectional stereo) imagery into a layered, multi-sphere image representation for six degree-of-freedom (6DoF) rendering. Stereo 360{deg} imagery can be captured from multi-camera systems for virtual reality (VR), but lacks motion parallax and correct-in-all-directions disparity cues. Together, these can quickly lead to VR sickness when viewing content. One solution is to try and generate a format suitable for 6DoF rendering, such as by estimating depth. However, this raises questions as to how to handle disoccluded regions in dynamic scenes. Our approach is to simultaneously learn depth and disocclusions via a multi-sphere image representation, which can be rendered with correct 6DoF disparity and motion parallax in VR. This significantly improves comfort for the viewer, and can be inferred and rendered in real time on modern GPU hardware. Together, these move towards making VR video a more comfortable immersive medium.
Feature representation plays a crucial role in visual correspondence, and recent methods for image matching resort to deeply stacked convolutional layers. These models, however, are both monolithic and static in the sense that they typically use a specific level of features, e.g., the output of the last layer, and adhere to it regardless of the images to match. In this work, we introduce a novel approach to visual correspondence that dynamically composes effective features by leveraging relevant layers conditioned on the images to match. Inspired by both multi-layer feature composition in object detection and adaptive inference architectures in classification, the proposed method, dubbed Dynamic Hyperpixel Flow, learns to compose hypercolumn features on the fly by selecting a small number of relevant layers from a deep convolutional neural network. We demonstrate the effectiveness on the task of semantic correspondence, i.e., establishing correspondences between images depicting different instances of the same object or scene category. Experiments on standard benchmarks show that the proposed method greatly improves matching performance over the state of the art in an adaptive and efficient manner.
State-of-the-art 2D image compression schemes rely on the power of convolutional neural networks (CNNs). Although CNNs offer promising perspectives for 2D image compression, extending such models to omnidirectional images is not straightforward. First, omnidirectional images have specific spatial and statistical properties that can not be fully captured by current CNN models. Second, basic mathematical operations composing a CNN architecture, e.g., translation and sampling, are not well-defined on the sphere. In this paper, we study the learning of representation models for omnidirectional images and propose to use the properties of HEALPix uniform sampling of the sphere to redefine the mathematical tools used in deep learning models for omnidirectional images. In particular, we: i) propose the definition of a new convolution operation on the sphere that keeps the high expressiveness and the low complexity of a classical 2D convolution; ii) adapt standard CNN techniques such as stride, iterative aggregation, and pixel shuffling to the spherical domain; and then iii) apply our new framework to the task of omnidirectional image compression. Our experiments show that our proposed on-the-sphere solution leads to a better compression gain that can save 13.7% of the bit rate compared to similar learned models applied to equirectangular images. Also, compared to learning models based on graph convolutional networks, our solution supports more expressive filters that can preserve high frequencies and provide a better perceptual quality of the compressed images. Such results demonstrate the efficiency of the proposed framework, which opens new research venues for other omnidirectional vision tasks to be effectively implemented on the sphere manifold.