Determine the neutron skin type by relativistic isobaric collisions


Abstract in English

The effects of neutron skin on the multiplicity ($N_{rm ch}$) and eccentricity($epsilon_2$) in relativistic $^{96}_{44}$Ru+$^{96}_{44}$Ru and $^{96}_{40}$Zr+$^{96}_{40}$Zr collisions at $sqrt{s_{_{rm NN}}}=200$ GeV are investigated with the Trento model. It is found that the Ru+Ru/Zr+Zr ratios of the $N_{rm ch}$ distributions and $epsilon_{2}$ in mid-central collisions are exquisitely sensitive to the neutron skin type (skin vs.~halo). The state-of-the-art calculations by energy density functional theory (DFT) favor the halo-type neutron skin and can soon be confronted by experimental data. It is demonstrated that the halo-type density can serve as a good surrogate for the DFT density, and thus can be efficiently employed to probe nuclear deformities by using elliptic flow data in central collisions. We provide hereby a proof-of-principle venue to simultaneously determine the neutron skin type, thickness, and nuclear deformity.

Download