Do you want to publish a course? Click here

Unconventional short-range structural fluctuations in cuprate high-$T_c$ superconductors

423   0   0.0 ( 0 )
 Added by Damjan Pelc
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The interplay between structural and electronic degrees of freedom in complex materials is the subject of extensive debate in physics and materials science. Particularly interesting questions pertain to the nature and extent of pre-transitional short-range order in diverse systems ranging from shape-memory alloys to unconventional superconductors, and how this microstructure affects macroscopic properties. Here we use neutron and X-ray scattering to uncover universal structural fluctuations in La$_{2-x}$Sr$_x$CuO$_4$ and Tl$_2$Ba$_2$CuO$_{6+{delta}}$, two cuprate superconductors with distinct point disorder effects and optimal superconducting transition temperatures. The fluctuations are present in wide doping and temperature ranges, including compositions that maintain high average structural symmetry, and they exhibit unusual, yet simple scaling laws. We relate this behavior to pre-transitional phenomena in a broad class of systems with martensitic transitions, and argue that it can be understood as a rare-region effect caused by intrinsic, doping- and compound-independent nanoscale inhomogeneity. We also uncover remarkable parallels with superconducting fluctuations, which indicates that the underlying inhomogeneity plays a pivotal role in cuprate physics.



rate research

Read More

We analyse fluctuations about $T_c$ in the specific heat of (Y,Ca)Ba$_2$Cu$_3$O$_{7-delta}$, YBa$_2$Cu$_4$O$_8$ and Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$. The mean-field transition temperature, $T_c^{mf}$, in the absence of fluctuations lies well above $T_c$ especially at low doping where it reaches as high as 150K. We show that phase and amplitude fluctuations set in simultaneously and $T_c^{mf}$ scales with the gap, $Delta_0$, such that $2Delta_0/k_BT_c^{mf}$ is comparable to the BCS weak-coupling value, 4.3, for d-wave superconductivity. We also show that $T_c^{mf}$ is unrelated to the pseudogap temperature, $T^*$.
141 - Shan Wu , Yu Song , Yu He 2020
Interactions between nematic fluctuations, magnetic order and superconductivity are central to the physics of iron-based superconductors. Here we report on in-plane transverse acoustic phonons in hole-doped Sr$_{1-x}$Na$_x$Fe$_2$As$_2$ measured via inelastic X-ray scattering, and extract both the nematic susceptibility and the nematic correlation length. By a self-contained method of analysis, for the underdoped ($x=0.36$) sample, which harbors a magnetically-ordered tetragonal phase, we find it hosts a short nematic correlation length $xi$ ~ 10 $AA$ and a large nematic susceptibility $chi_{rm nem}$. The optimal-doped ($x=0.55$) sample exhibits weaker phonon softening effects, indicative of both reduced $xi$ and $chi_{rm nem}$. Our results suggest short-range nematic fluctuations may favor superconductivity, placing emphasis on the nematic correlation length for understanding the iron-based superconductors.
194 - J. G. Storey , J. L. Tallon 2012
Evidence from NMR of a two-component spin system in cuprate high-$T_c$ superconductors is shown to be paralleled by similar evidence from the electronic entropy so that a two-component quasiparticle fluid is implicated. We propose that this two-component scenario is restricted to the optimal and underdoped regimes and arises from the upper and lower branches of the reconstructed energy-momentum dispersion proposed by Yang, Rice and Zhang (YRZ) to describe the pseudogap. We calculate the spin susceptibility within the YRZ formalism and show that the doping and temperature dependence reproduces the experimental data for the cuprates.
We put forth a mechanism for enhancing the interlayer transport in cuprate superconductors, by optically driving plasmonic excitations along the $c$ axis with a frequency that is blue-detuned from the Higgs frequency. The plasmonic excitations induce a collective oscillation of the Higgs field which induces a parametric enhancement of the superconducting response, as we demonstrate with a minimal analytical model. Furthermore, we perform simulations of a particle-hole symmetric $U(1)$ lattice gauge theory and find good agreement with our analytical prediction. We map out the renormalization of the interlayer coupling as a function of the parameters of the optical field and demonstrate that the Higgs mode mediated enhancement can be larger than $50%$.
The origin of uniaxial and hydrostatic pressure effects on $T_c$ in the single-layered cuprate superconductors is theoretically explored. A two-orbital model, derived from first principles and analyzed with the fluctuation exchange approximation gives axial-dependent pressure coefficients, $partial T_c/partial P_a>0$, $partial T_c/partial P_c<0$, with a hydrostatic response $partial T_c/partial P>0$ for both La214 and Hg1201 cuprates, in qualitative agreement with experiments. Physically, this is shown to come from a unified picture in which higher $T_c$ is achieved with an orbital distillation, namely, the less the $d_{x^2-y^2}$ main band is hybridized with the $d_{z^2}$ and $4s$ orbitals higher the $T_c$. Some implications for obtaining higher $T_c$ materials are discussed.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا