Do you want to publish a course? Click here

Thumbnail: A Novel Data Augmentation for Convolutional Neural Network

80   0   0.0 ( 0 )
 Added by Tianshu Xie
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

In this paper, we propose a new data augmentation strategy named Thumbnail, which aims to strengthen the networks capture of global features. We get a generated image by reducing an image to a certain size, which is called as the thumbnail, and pasting it in the random position of the original image. The generated image not only retains most of the original image information but also has the global information in the thumbnail. Furthermore, we find that the idea of thumbnail can be perfectly integrated with Mixed Sample Data Augmentation, so we paste the thumbnail in another image where the ground truth labels are also mixed with a certain weight, which makes great achievements on various computer vision tasks. Extensive experiments show that Thumbnail works better than the state-of-the-art augmentation strategies across classification, fine-grained image classification, and object detection. On ImageNet classification, ResNet50 architecture with our method achieves 79.21% accuracy, which is more than 2.89% improvement on the baseline.



rate research

Read More

In this paper, we propose a novel training strategy for convolutional neural network(CNN) named Feature Mining, that aims to strengthen the networks learning of the local feature. Through experiments, we find that semantic contained in different parts of the feature is different, while the network will inevitably lose the local information during feedforward propagation. In order to enhance the learning of local feature, Feature Mining divides the complete feature into two complementary parts and reuse these divided feature to make the network learn more local information, we call the two steps as feature segmentation and feature reusing. Feature Mining is a parameter-free method and has plug-and-play nature, and can be applied to any CNN models. Extensive experiments demonstrate the wide applicability, versatility, and compatibility of our method.
In the problems of image retrieval and annotation, complete textual tag lists of images play critical roles. However, in real-world applications, the image tags are usually incomplete, thus it is important to learn the complete tags for images. In this paper, we study the problem of image tag complete and proposed a novel method for this problem based on a popular image representation method, convolutional neural network (CNN). The method estimates the complete tags from the convolutional filtering outputs of images based on a linear predictor. The CNN parameters, linear predictor, and the complete tags are learned jointly by our method. We build a minimization problem to encourage the consistency between the complete tags and the available incomplete tags, reduce the estimation error, and reduce the model complexity. An iterative algorithm is developed to solve the minimization problem. Experiments over benchmark image data sets show its effectiveness.
130 - Haitong Tang , Shuang He , Xia Lu 2021
It is a challenging task to accurately perform semantic segmentation due to the complexity of real picture scenes. Many semantic segmentation methods based on traditional deep learning insufficiently captured the semantic and appearance information of images, which put limit on their generality and robustness for various application scenes. In this paper, we proposed a novel strategy that reformulated the popularly-used convolution operation to multi-layer convolutional sparse coding block to ease the aforementioned deficiency. This strategy can be possibly used to significantly improve the segmentation performance of any semantic segmentation model that involves convolutional operations. To prove the effectiveness of our idea, we chose the widely-used U-Net model for the demonstration purpose, and we designed CSC-Unet model series based on U-Net. Through extensive analysis and experiments, we provided credible evidence showing that the multi-layer convolutional sparse coding block enables semantic segmentation model to converge faster, can extract finer semantic and appearance information of images, and improve the ability to recover spatial detail information. The best CSC-Unet model significantly outperforms the results of the original U-Net on three public datasets with different scenarios, i.e., 87.14% vs. 84.71% on DeepCrack dataset, 68.91% vs. 67.09% on Nuclei dataset, and 53.68% vs. 48.82% on CamVid dataset, respectively.
In convolutional neural network (CNN), dropout cannot work well because dropped information is not entirely obscured in convolutional layers where features are correlated spatially. Except randomly discarding regions or channels, many approaches try to overcome this defect by dropping influential units. In this paper, we propose a non-random dropout method named FocusedDropout, aiming to make the network focus more on the target. In FocusedDropout, we use a simple but effective way to search for the target-related features, retain these features and discard others, which is contrary to the existing methods. We found that this novel method can improve network performance by making the network more target-focused. Besides, increasing the weight decay while using FocusedDropout can avoid the overfitting and increase accuracy. Experimental results show that even a slight cost, 10% of batches employing FocusedDropout, can produce a nice performance boost over the baselines on multiple datasets of classification, including CIFAR10, CIFAR100, Tiny Imagenet, and has a good versatility for different CNN models.
The parallelism of optics and the miniaturization of optical components using nanophotonic structures, such as metasurfaces present a compelling alternative to electronic implementations of convolutional neural networks. The lack of a low-power optical nonlinearity, however, requires slow and energy-inefficient
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا