Do you want to publish a course? Click here

A Data Augmentation Method by Mixing Up Negative Candidate Answers for Solving Ravens Progressive Matrices

80   0   0.0 ( 0 )
 Added by Wentao He
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Ravens Progressive Matrices (RPMs) are frequently-used in testing humans visual reasoning ability. Recently developed RPM-like datasets and solution models transfer this kind of problems from cognitive science to computer science. In view of the poor generalization performance due to insufficient samples in RPM datasets, we propose a data augmentation strategy by image mix-up, which is generalizable to a variety of multiple-choice problems, especially for image-based RPM-like problems. By focusing on potential functionalities of negative candidate answers, the visual reasoning capability of the model is enhanced. By applying the proposed data augmentation method, we achieve significant and consistent improvement on various RPM-like datasets compared with the state-of-the-art models.



rate research

Read More

The ability to hypothesise, develop abstract concepts based on concrete observations and apply these hypotheses to justify future actions has been paramount in human development. An existing line of research in outfitting intelligent machines with abstract reasoning capabilities revolves around the Ravens Progressive Matrices (RPM). There have been many breakthroughs in supervised approaches to solving RPM in recent years. However, this process requires external assistance, and thus it cannot be claimed that machines have achieved reasoning ability comparable to humans. Namely, humans can solve RPM problems without supervision or prior experience once the RPM rule that relations can only exist row/column-wise is properly introduced. In this paper, we introduce a pairwise relations discriminator (PRD), a technique to develop unsupervised models with sufficient reasoning abilities to tackle an RPM problem. PRD reframes the RPM problem into a relation comparison task, which we can solve without requiring the labelling of the RPM problem. We can identify the optimal candidate by adapting the application of PRD to the RPM problem. Our approach, the PRD, establishes a new state-of-the-art unsupervised learning benchmark with an accuracy of 55.9% on the I-RAVEN, presenting a significant improvement and a step forward in equipping machines with abstract reasoning.
Data augmentation is often used to enlarge datasets with synthetic samples generated in accordance with the underlying data distribution. To enable a wider range of augmentations, we explore negative data augmentation strategies (NDA)that intentionally create out-of-distribution samples. We show that such negative out-of-distribution samples provide information on the support of the data distribution, and can be leveraged for generative modeling and representation learning. We introduce a new GAN training objective where we use NDA as an additional source of synthetic data for the discriminator. We prove that under suitable conditions, optimizing the resulting objective still recovers the true data distribution but can directly bias the generator towards avoiding samples that lack the desired structure. Empirically, models trained with our method achieve improved conditional/unconditional image generation along with improved anomaly detection capabilities. Further, we incorporate the same negative data augmentation strategy in a contrastive learning framework for self-supervised representation learning on images and videos, achieving improved performance on downstream image classification, object detection, and action recognition tasks. These results suggest that prior knowledge on what does not constitute valid data is an effective form of weak supervision across a range of unsupervised learning tasks.
Psychologists recognize Ravens Progressive Matrices as a very effective test of general human intelligence. While many computational models have been developed by the AI community to investigate different forms of top-down, deliberative reasoning on the test, there has been less research on bottom-up perceptual processes, like Gestalt image completion, that are also critical in human test performance. In this work, we investigate how Gestalt visual reasoning on the Ravens test can be modeled using generative image inpainting techniques from computer vision. We demonstrate that a self-supervised inpainting model trained only on photorealistic images of objects achieves a score of 27/36 on the Colored Progressive Matrices, which corresponds to average performance for nine-year-old children. We also show that models trained on other datasets (faces, places, and textures) do not perform as well. Our results illustrate how learning visual regularities in real-world images can translate into successful reasoning about artificial test stimuli. On the flip side, our results also highlight the limitations of such transfer, which may explain why intelligence tests like the Ravens are often sensitive to peoples individual sociocultural backgrounds.
Novelty detection is the process of determining whether a query example differs from the learned training distribution. Previous methods attempt to learn the representation of the normal samples via generative adversarial networks (GANs). However, they will suffer from instability training, mode dropping, and low discriminative ability. Recently, various pretext tasks (e.g. rotation prediction and clustering) have been proposed for self-supervised learning in novelty detection. However, the learned latent features are still low discriminative. We overcome such problems by introducing a novel decoder-encoder framework. Firstly, a generative network (a.k.a. decoder) learns the representation by mapping the initialized latent vector to an image. In particular, this vector is initialized by considering the entire distribution of training data to avoid the problem of mode-dropping. Secondly, a contrastive network (a.k.a. encoder) aims to ``learn to compare through mutual information estimation, which directly helps the generative network to obtain a more discriminative representation by using a negative data augmentation strategy. Extensive experiments show that our model has significant superiority over cutting-edge novelty detectors and achieves new state-of-the-art results on some novelty detection benchmarks, e.g. CIFAR10 and DCASE. Moreover, our model is more stable for training in a non-adversarial manner, compared to other adversarial based novelty detection methods.
Building instance segmentation models that are data-efficient and can handle rare object categories is an important challenge in computer vision. Leveraging data augmentations is a promising direction towards addressing this challenge. Here, we perform a systematic study of the Copy-Paste augmentation ([13, 12]) for instance segmentation where we randomly paste objects onto an image. Prior studies on Copy-Paste relied on modeling the surrounding visual context for pasting the objects. However, we find that the simple mechanism of pasting objects randomly is good enough and can provide solid gains on top of strong baselines. Furthermore, we show Copy-Paste is additive with semi-supervised methods that leverage extra data through pseudo labeling (e.g. self-training). On COCO instance segmentation, we achieve 49.1 mask AP and 57.3 box AP, an improvement of +0.6 mask AP and +1.5 box AP over the previous state-of-the-art. We further demonstrate that Copy-Paste can lead to significant improvements on the LVIS benchmark. Our baseline model outperforms the LVIS 2020 Challenge winning entry by +3.6 mask AP on rare categories.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا