Do you want to publish a course? Click here

Outdoor sub-THz Position Location and Tracking using Field Measurements at 142 GHz

95   0   0.0 ( 0 )
 Added by Ojas Kanhere
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Future sub-THz cellular deployments may be utilized to complement the coverage of the global positioning system (GPS) and provide centimeter-level accuracy. In this work, we use measurement data at 142 GHz to test a map-based position location algorithm in an outdoor urban microcell (UMi) environment. We utilize an extended Kalman filter (EKF) to track the position of the user equipment (UE) along a rectangular track, with the transmitter-receiver separation distances varying from 24.3 m to 52.8 m. The position and velocity of the UE are tracked by the EKF, with measurements of the angle of arrival and time of flight information obtained along an outdoor track, to provide a mean accuracy of 24.8 cm at 142 GHz, over 34 UE locations, using a single base station in line-of-sight and non-line-of-sight.



rate research

Read More

Terahertz frequency bands will likely be used for the next-generation wireless communication systems to provide data rates of hundreds of Gbps or even Tbps because of the wide swaths of unused and unexplored spectrum. This paper presents two outdoor wideband measurement campaigns in downtown Brooklyn (urban microcell environment) in the sub-THz band of 140 GHz with TX-RX separation distance up to 100 m: i) terrestrial urban microcell measurement campaign, and ii) rooftop surrogate satellite and backhaul measurement campaign. Outdoor omnidirectional and directional path loss models for both line-of-sight and non-line-of-sight scenarios, as well as foliage loss (signal attenuation through foliage), are provided at 140 GHz for urban microcell environments. These measurements and models provide an understanding of both the outdoor terrestrial (e.g., 6G cellular and backhaul) and non-terrestrial (e.g., satellite and unmanned aerial vehicle communications) wireless channels, and prove the feasibility of using THz frequency bands for outdoor fixed and mobile cellular communications. This paper can be used for future outdoor wireless system design at frequencies above 100 GHz.
In this paper, the problem of unmanned aerial vehicle (UAV) deployment, power allocation, and bandwidth allocation is investigated for a UAV-assisted wireless system operating at terahertz (THz) frequencies. In the studied model, one UAV can service ground users using the THz frequency band. However, the highly uncertain THz channel will introduce new challenges to the UAV location, user power, and bandwidth allocation optimization problems. Therefore, it is necessary to design a novel framework to deploy UAVs in the THz wireless systems. This problem is formally posed as an optimization problem whose goal is to minimize the total delays of the uplink and downlink transmissions between the UAV and the ground users by jointly optimizing the deployment of the UAV, the transmit power and the bandwidth of each user. The communication delay is crucial for emergency communications. To tackle this nonconvex delay minimization problem, an alternating algorithm is proposed while iteratively solving three subproblems: location optimization subproblem, power control subproblem, and bandwidth allocation subproblem. Simulation results show that the proposed algorithm can reduce the transmission delay by up to $59.3%$, $49.8%$ and $75.5%$ respectively compared to baseline algorithms that optimize only UAV location, bandwidth allocation or transmit power control.
The high attenuation of millimeter-wave (mmWave) would significantly reduce the coverage areas, and hence it is critical to study the propagation characteristics of mmWave in multiple deployment scenarios. In this work, we investigated the propagation and scattering behavior of 60 GHz mmWave signals in outdoor environments at a travel distance of 98 m for an aerial link (rooftop to rooftop), and 147 m for a ground link (light-pole to light-pole). Measurements were carried out using Facebook Terragraph (TG) radios. Results include received power, path loss, signal-to-noise ratio (SNR), and root mean square (RMS) delay spread for all beamforming directions supported by the antenna array. Strong line-of-sight (LOS) propagation exists in both links. We also observed rich multipath components (MPCs) due to edge scatterings in the aerial link, while only LOS and ground reflection MPCs in the other link.
We consider the problem of localizing two sensors using signals of opportunity from beacons with known positions. Beacons and sensors have asynchronous local clocks or oscillators with unknown clock skews and offsets. We model clock skews as random, and analyze the biases introduced by clock asynchronism in the received signals. By deriving the equivalent Fisher information matrix for the modified Bayesian Cramer-Rao lower bound (CRLB) of sensor position and velocity estimation, we quantify the errors caused by clock asynchronism.
Sub-Terahertz frequencies (frequencies above 100 GHz) have the potential to satisfy the unprecedented demand on data rate on the order of hundreds of Gbps for sixth-generation (6G) wireless communications and beyond. Accurate beam tracking and rapid beam selection are increasingly important since antenna arrays with more elements generate narrower beams to compensate for additional path loss within the first meter of propagation distance at sub-THz frequencies. Realistic channel models for above 100 GHz are needed, and should include spatial consistency to model the spatial and temporal channel evolution along the user trajectory. This paper introduces recent outdoor urban microcell (UMi) propagation measurements at 142 GHz along a 39 m $times$ 12 m rectangular route (102 m long), where each consecutive and adjacent receiver location is 3 m apart from each other. The measured power delay profiles and angular power spectrum at each receiver location are used to study spatial autocorrelation properties of various channel parameters such as shadow fading, delay spread, and angular spread along the track. Compared to the correlation distances reported in the 3GPP TR 38.901 for frequencies below 100 GHz, the measured correlation distance of shadow fading at 142 GHz (3.8 m) is much shorter than the 10-13 m as specified in 3GPP; the measured correlation distances of delay spread and angular spread at 142 GHz (both 12 m) are comparable to the 7-10 m as specified in 3GPP. This result may guide the development of a statistical spatially consistent channel model for frequencies above 100 GHz in the UMi street canyon environment.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا