Gate Tunable Supercurrent in Josephson Junctions Based on Bi2Te3 Topological Insulator Thin Films


Abstract in English

We report transport measurements on Josephson junctions consisting of Bi2Te3 topological insulator (TI) thin films contacted by superconducting Nb electrodes. For a device with junction length L = 134 nm, the critical supercurrent Ic can be modulated by an electrical gate which tunes the carrier type and density of the TI film. Ic can reach a minimum when the TI is near the charge neutrality regime with the Fermi energy lying close to the Dirac point of the surface state. In the p-type regime the Josephson current can be well described by a short ballistic junction model. In the n-type regime the junction is ballistic at 0.7 K < T < 3.8 K while for T < 0.7 K the diffusive bulk modes emerge and contribute a larger Ic than the ballistic model. We attribute the lack of diffusive bulk modes in the p-type regime to the formation of p-n junctions. Our work provides new clues for search of Majorana zero mode in TI-based superconducting devices.

Download