Do you want to publish a course? Click here

Automatic Cause Detection of Performance Problems in Web Applications

107   0   0.0 ( 0 )
 Added by Quentin Fournier
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

The execution of similar units can be compared by their internal behaviors to determine the causes of their potential performance issues. For instance, by examining the internal behaviors of different fast or slow web requests more closely and by clustering and comparing their internal executions, one can determine what causes some requests to run slowly or behave in unexpected ways. In this paper, we propose a method of extracting the internal behavior of web requests as well as introduce a pipeline that detects performance issues in web requests and provides insights into their root causes. First, low-level and fine-grained information regarding each request is gathered by tracing both the user space and the kernel space. Second, further information is extracted and fed into an outlier detector. Finally, these outliers are then clustered by their behavior, and each group is analyzed separately. Experiments revealed that this pipeline is indeed able to detect slow web requests and provide additional insights into their true root causes. Notably, we were able to identify a real PHP cache contention using the proposed approach.



rate research

Read More

We exploit recent results in quantifying the robustness of neural networks to input variations to construct and tune a model-based anomaly detector, where the data-driven estimator model is provided by an autoregressive neural network. In tuning, we specifically provide upper bounds on the rate of false alarms expected under normal operation. To accomplish this, we provide a theory extension to allow for the propagation of multiple confidence ellipsoids through a neural network. The ellipsoid that bounds the output of the neural network under the input variation informs the sensitivity - and thus the threshold tuning - of the detector. We demonstrate this approach on a linear and nonlinear dynamical system.
When building Deep Learning (DL) models, data scientists and software engineers manage the trade-off between their accuracy, or any other suitable success criteria, and their complexity. In an environment with high computational power, a common practice is making the models go deeper by designing more sophisticated architectures. However, in the context of mobile devices, which possess less computational power, keeping complexity under control is a must. In this paper, we study the performance of a system that integrates a DL model as a trade-off between the accuracy and the complexity. At the same time, we relate the complexity to the efficiency of the system. With this, we present a practical study that aims to explore the challenges met when optimizing the performance of DL models becomes a requirement. Concretely, we aim to identify: (i) the most concerning challenges when deploying DL-based software in mobile applications; and (ii) the path for optimizing the performance trade-off. We obtain results that verify many of the identified challenges in the related work such as the availability of frameworks and the software-data dependency. We provide a documentation of our experience when facing the identified challenges together with the discussion of possible solutions to them. Additionally, we implement a solution to the sustainability of the DL models when deployed in order to reduce the severity of other identified challenges. Moreover, we relate the performance trade-off to a new defined challenge featuring the impact of the complexity in the obtained accuracy. Finally, we discuss and motivate future work that aims to provide solutions to the more open challenges found.
158 - Haowen Xu 2018
To ensure undisrupted business, large Internet companies need to closely monitor various KPIs (e.g., Page Views, number of online users, and number of orders) of its Web applications, to accurately detect anomalies and trigger timely troubleshooting/mitigation. However, anomaly detection for these seasonal KPIs with various patterns and data quality has been a great challenge, especially without labels. In this paper, we proposed Donut, an unsupervised anomaly detection algorithm based on VAE. Thanks to a few of our key techniques, Donut greatly outperforms a state-of-arts supervised ensemble approach and a baseline VAE approach, and its best F-scores range from 0.75 to 0.9 for the studied KPIs from a top global Internet company. We come up with a novel KDE interpretation of reconstruction for Donut, making it the first VAE-based anomaly detection algorithm with solid theoretical explanation.
Processor design validation and debug is a difficult and complex task, which consumes the lions share of the design process. Design bugs that affect processor performance rather than its functionality are especially difficult to catch, particularly in new microarchitectures. This is because, unlike functional bugs, the correct processor performance of new microarchitectures on complex, long-running benchmarks is typically not deterministically known. Thus, when performance benchmarking new microarchitectures, performance teams may assume that the design is correct when the performance of the new microarchitecture exceeds that of the previous generation, despite significant performance regressions existing in the design. In this work, we present a two-stage, machine learning-based methodology that is able to detect the existence of performance bugs in microprocessors. Our results show that our best technique detects 91.5% of microprocessor core performance bugs whose average IPC impact across the studied applications is greater than 1% versus a bug-free design with zero false positives. When evaluated on memory system bugs, our technique achieves 100% detection with zero false positives. Moreover, the detection is automatic, requiring very little performance engineer time.
The services of internet place a key role in the daily life by enabling the in sequence from anywhere. To provide somewhere to stay the communication and management in applications the web services has stimulated to multitier design. In this multitier the web servers contain front end logic and data with database servers. In this paper, we present binary protector intrusion detection systems which designs the network behavior of user sessions across both the front-end web server and the back-end database. By examining both web and subsequent database requests, we are able to rummage out attacks that independent IDS would not be able to distinguish.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا