Do you want to publish a course? Click here

On wall crossing for K-stability

79   0   0.0 ( 0 )
 Added by Chuyu Zhou
 Publication date 2021
  fields
and research's language is English
 Authors Chuyu Zhou




Ask ChatGPT about the research

In this paper, we explore the wall crossing phenomenon for K-stability, and apply it to explain the wall crossing for K-moduli stacks and K-moduli spaces.



rate research

Read More

We construct proper good moduli spaces parametrizing K-polystable $mathbb{Q}$-Gorenstein smoothable log Fano pairs $(X, cD)$, where $X$ is a Fano variety and $D$ is a rational multiple of the anti-canonical divisor. We then establish a wall-crossing framework of these K-moduli spaces as $c$ varies. The main application in this paper is the case of plane curves of degree $d geq 4$ as boundary divisors of $mathbb{P}^2$. In this case, we show that when the coefficient $c$ is small, the K-moduli space of these pairs is isomorphic to the GIT moduli space. We then show that the first wall crossing of these K-moduli spaces are weighted blow-ups of Kirwan type. We also describe all wall crossings for degree 4,5,6, and relate the final K-moduli spaces to Hackings compactification and the moduli of K3 surfaces.
We prove that the Thaddeus flips of $L$-twisted sheaves constructed by Matsuki and Wentworth can be obtained via Bridgeland wall-crossing. Similarly, we realize the change of polarization for moduli spaces of 1-dimensional Gieseker semistable sheaves on a surface by varying a family of stability conditions.
We introduce the notion of analytic stability data on the Lie algebra of vector fields on a torus. We prove that the subspace of analytic stability data is open and closed in the topological space of all stability data. We formulate a general conjecture which explains how analytic stability data give rise to resurgent series. This conjecture is checked in several examples.
Tropical geometry and the theory of Newton-Okounkov bodies are two methods which produce toric degenerations of an irreducible complex projective variety. Kaveh-Manon showed that the two are related. We give geometric maps between the Newton-Okounkov bodies corresponding to two adjacent maximal-dimensional prime cones in the tropicalization of $X$. Under a technical condition, we produce a natural algebraic wall-crossing map on the underlying value semigroups (of the corresponding valuations). In the case of the tropical Grassmannian $Gr(2,m)$, we prove that the algebraic wall-crossing map is the restriction of a geometric map. In an Appendix by Nathan Ilten, he explains how the geometric wall-crossing phenomenon can also be derived from the perspective of complexity-one $T$-varieties; Ilten also explains the connection to the combinatorial mutations studied by Akhtar-Coates-Galkin-Kasprzyk.
186 - Kentaro Nagao 2011
We study motivic Donaldson-Thomas invariants in the sense of Behrend-Bryan-Szendroi. A wall-crossing formula under a mutation is proved for a certain class of quivers with potentials.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا