Do you want to publish a course? Click here

Quantifying Ignorance in Individual-Level Causal-Effect Estimates under Hidden Confounding

171   0   0.0 ( 0 )
 Added by Andrew Jesson D
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We study the problem of learning conditional average treatment effects (CATE) from high-dimensional, observational data with unobserved confounders. Unobserved confounders introduce ignorance -- a level of unidentifiability -- about an individuals response to treatment by inducing bias in CATE estimates. We present a new parametric interval estimator suited for high-dimensional data, that estimates a range of possible CATE values when given a predefined bound on the level of hidden confounding. Further, previous interval estimators do not account for ignorance about the CATE associated with samples that may be underrepresented in the original study, or samples that violate the overlap assumption. Our interval estimator also incorporates model uncertainty so that practitioners can be made aware of out-of-distribution data. We prove that our estimator converges to tight bounds on CATE when there may be unobserved confounding, and assess it using semi-synthetic, high-dimensional datasets.



rate research

Read More

The data drawn from biological, economic, and social systems are often confounded due to the presence of unmeasured variables. Prior work in causal discovery has focused on discrete search procedures for selecting acyclic directed mixed graphs (ADMGs), specifically ancestral ADMGs, that encode ordinary conditional independence constraints among the observed variables of the system. However, confounded systems also exhibit more general equality restrictions that cannot be represented via these graphs, placing a limit on the kinds of structures that can be learned using ancestral ADMGs. In this work, we derive differentiable algebraic constraints that fully characterize the space of ancestral ADMGs, as well as more general classes of ADMGs, arid ADMGs and bow-free ADMGs, that capture all equality restrictions on the observed variables. We use these constraints to cast causal discovery as a continuous optimization problem and design differentiable procedures to find the best fitting ADMG when the data comes from a confounded linear system of equations with correlated errors. We demonstrate the efficacy of our method through simulations and application to a protein expression dataset. Code implementing our methods is open-source and publicly available at https://gitlab.com/rbhatta8/dcd and will be incorporated into the Ananke package.
The analysis of causal effects when the outcome of interest is possibly truncated by death has a long history in statistics and causal inference. The survivor average causal effect is commonly identified with more assumptions than those guaranteed by the design of a randomized clinical trial or using sensitivity analysis. This paper demonstrates that individual level causal effects in the `always survivor principal stratum can be identified with no stronger identification assumptions than randomization. We illustrate the practical utility of our methods using data from a clinical trial on patients with prostate cancer. Our methodology is the first and, as of yet, only proposed procedure that enables detecting causal effects in the presence of truncation by death using only the assumptions that are guaranteed by design of the clinical trial. This methodology is applicable to all types of outcomes.
Estimating the Individual Treatment Effect from observational data, defined as the difference between outcomes with and without treatment or intervention, while observing just one of both, is a challenging problems in causal learning. In this paper, we formulate this problem as an inference from hidden variables and enforce causal constraints based on a model of four exclusive causal populations. We propose a new version of the EM algorithm, coined as Expected-Causality-Maximization (ECM) algorithm and provide hints on its convergence under mild conditions. We compare our algorithm to baseline methods on synthetic and real-world data and discuss its performances.
Reliable treatment effect estimation from observational data depends on the availability of all confounding information. While much work has targeted treatment effect estimation from observational data, there is relatively little work in the setting of confounding variable missingness, where collecting more information on confounders is often costly or time-consuming. In this work, we frame this challenge as a problem of feature acquisition of confounding features for causal inference. Our goal is to prioritize acquiring values for a fixed and known subset of missing confounders in samples that lead to efficient average treatment effect estimation. We propose two acquisition strategies based on i) covariate balancing (CB), and ii) reducing statistical estimation error on observed factual outcome error (OE). We compare CB and OE on five common causal effect estimation methods, and demonstrate improved sample efficiency of OE over baseline methods under various settings. We also provide visualizations for further analysis on the difference between our proposed methods.
In recommendation systems, the existence of the missing-not-at-random (MNAR) problem results in the selection bias issue, degrading the recommendation performance ultimately. A common practice to address MNAR is to treat missing entries from the so-called exposure perspective, i.e., modeling how an item is exposed (provided) to a user. Most of the existing approaches use heuristic models or re-weighting strategy on observed ratings to mimic the missing-at-random setting. However, little research has been done to reveal how the ratings are missing from a causal perspective. To bridge the gap, we propose an unbiased and robust method called DENC (De-bias Network Confounding in Recommendation) inspired by confounder analysis in causal inference. In general, DENC provides a causal analysis on MNAR from both the inherent factors (e.g., latent user or item factors) and auxiliary networks perspective. Particularly, the proposed exposure model in DENC can control the social network confounder meanwhile preserves the observed exposure information. We also develop a deconfounding model through the balanced representation learning to retain the primary user and item features, which enables DENC generalize well on the rating prediction. Extensive experiments on three datasets validate that our proposed model outperforms the state-of-the-art baselines.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا