Unsupervised representation learning achieves promising performances in pre-training representations for object detectors. However, previous approaches are mainly designed for image-level classification, leading to suboptimal detection performance. To bridge the performance gap, this work proposes a simple yet effective representation learning method for object detection, named patch re-identification (Re-ID), which can be treated as a contrastive pretext task to learn location-discriminative representation unsupervisedly, possessing appealing advantages compared to its counterparts. Firstly, unlike fully-supervised person Re-ID that matches a human identity in different camera views, patch Re-ID treats an important patch as a pseudo identity and contrastively learns its correspondence in two different image views, where the pseudo identity has different translations and transformations, enabling to learn discriminative features for object detection. Secondly, patch Re-ID is performed in Deeply Unsupervised manner to learn multi-level representations, appealing to object detection. Thirdly, extensive experiments show that our method significantly outperforms its counterparts on COCO in all settings, such as different training iterations and data percentages. For example, Mask R-CNN initialized with our representation surpasses MoCo v2 and even its fully-supervised counterparts in all setups of training iterations (e.g. 2.1 and 1.1 mAP improvement compared to MoCo v2 in 12k and 90k iterations respectively). Code will be released at https://github.com/dingjiansw101/DUPR.