Do you want to publish a course? Click here

Annihilation of positrons from $^{22}$Na in novae

93   0   0.0 ( 0 )
 Added by Nikolai Chugai
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We explore for the first time effects of the magnetic field on the escape of $^{22}$Na positrons and on the flux evolution of annihilation 511 keV line in novae. It is shown that for the white dwarf magnetic field of $sim 10^6$ G the field of the expanding nova shell is able to significantly impede positrons escape and increase the time of the nova emission in 511keV up to hundreds days.



rate research

Read More

Understanding the processes which create and destroy $^{22}$Na is important for diagnosing classical nova outbursts. Conventional $^{22}$Na(p,$gamma$) studies are complicated by the need to employ radioactive targets. In contrast, we have formed the particle-unbound states of interest through the heavy-ion fusion reaction, $^{12}$C($^{12}$C,n)$^{23}$Mg and used the Gammasphere array to investigate their radiative decay branches. Detailed spectroscopy was possible and the $^{22}$Na(p,$gamma$) reaction rate has been re-evaluated. New hydrodynamical calculations incorporating the upper and lower limits on the new rate suggest a reduction in the yield of $^{22}$Na with respect to previous estimates, implying a reduction in the maximum detectability distance for $^{22}$Na $gamma$ rays from novae.
The radionuclide $^{22}$Na is a target of $gamma$-ray astronomy searches, predicted to be produced during thermonuclear runaways driving classical novae. The $^{22}$Na(p,$gamma$)$^{23}$Mg reaction is the main destruction channel of $^{22}$Na during a nova, hence, its rate is needed to accurately predict the $^{22}$Na yield. However, experimental determinations of the resonance strengths have led to inconsistent results. In this work, we report a measurement of the branching ratios of the $^{23}$Al $beta$-delayed protons, as a probe of the key 204--keV (center-of-mass) $^{22}$Na(p,$gamma$)$^{23}$Mg resonance strength. We report a factor of 5 lower branching ratio compared to the most recent literature value. The variation in $^{22}$Na yield due to nuclear data inconsistencies was assessed using a series of hydrodynamic nova outburst simulations and has increased to a factor of 3.8, corresponding to a factor of $sim$2 uncertainty in the maximum detectability distance. This is the first reported scientific measurement using the Gaseous Detector with Germanium Tagging (GADGET) system.
173 - N. Fornengo 2007
Indirect detection signals from dark matter annihilation are studied in the positron channel. We discuss in detail the positron propagation inside the galactic medium: we present novel solutions of the diffusion and propagation equations and we focus on the determination of the astrophysical uncertainties which affect the positron dark matter signal. We show that, especially in the low energy tail of the positron spectra at Earth, the uncertainty is sizeable and we quantify the effect. Comparison of our predictions with current available and foreseen experimental data are derived.
132 - A. Slemer 2016
We investigate the impact of the new LUNA rate for the nuclear reaction $^{22}$Ne$(p,gamma)^{23}$Na on the chemical ejecta of intermediate-mass stars, with particular focus on the thermally-pulsing asymptotic giant branch (TP-AGB) stars that experience hot-bottom burning. To this aim we use the PARSEC and COLIBRI codes to compute the complete evolution, from the pre-main sequence up to the termination of the TP-AGB phase, of a set of stellar models with initial masses in the range $3.0,M_{odot} - 6.0,M_{odot}$, and metallicities $Z_{rm i}=0.0005$, $Z_{rm i}=0.006$, and $Z_{rm i} = 0.014$. We find that the new LUNA measures have much reduced the nuclear uncertainties of the $^{22}$Ne and $^{23}$Na AGB ejecta, which drop from factors of $simeq 10$ to only a factor of few for the lowest metallicity models. Relying on the most recent estimations for the destruction rate of $^{23}$Na, the uncertainties that still affect the $^{22}$Ne and $^{23}$Na AGB ejecta are mainly dominated by evolutionary aspects (efficiency of mass-loss, third dredge-up, convection). Finally, we discuss how the LUNA results impact on the hypothesis that invokes massive AGB stars as the main agents of the observed O-Na anti-correlation in Galactic globular clusters. We derive quantitative indications on the efficiencies of key physical processes (mass loss, third dredge-up, sodium destruction) in order to simultaneously reproduce both the Na-rich, O-poor extreme of the anti-correlation, and the observational constraints on the CNO abundance. Results for the corresponding chemical ejecta are made publicly available.
219 - T. Delahaye 2008
Indirect detection signals from dark matter annihilation are studied in the positron channel. We discuss in detail the positron propagation inside the galactic medium: we present novel solutions of the diffusion and propagation equations and we focus on the determination of the astrophysical uncertainties which affect the positron dark matter signal. We find dark matter scenarios and propagation models that nicely fit existing data on the positron fraction. Finally, we present predictions both on the positron fraction and on the flux for already running or planned space experiments, concluding that they have the potential to discriminate a possible signal from the background and, in some cases, to distinguish among different astrophysical propagation models.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا