Rydberg blockade in an ultracold strontium gas revealed by two-photon excitation dynamics


Abstract in English

We demonstrate the interaction-induced blockade effect in an ultracold $^{88}$Sr gas via studying the time dynamics of a two-photon excitation to the triplet Rydberg series $5mathrm{s}nmathrm{s}, ^3textrm{S}_1$ for five different principle quantum numbers $n$ ranging from 19 to 37. By using a multi-pulse excitation sequence to increase the detection sensitivity we could identify Rydberg-excitation-induced atom losses as low as $<1%$. Based on an optical Bloch equation formalism, treating the Rydberg-Rydberg interaction on a mean-field level, the van der Waals coefficients are extracted from the observed dynamics, which agree fairly well with emph{ab initio} calculations.

Download