Do you want to publish a course? Click here

Risk Prediction with Imperfect Survival Outcome Information from Electronic Health Records

124   0   0.0 ( 0 )
 Added by Jue Hou
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Readily available proxies for time of disease onset such as time of the first diagnostic code can lead to substantial risk prediction error if performing analyses based on poor proxies. Due to the lack of detailed documentation and labor intensiveness of manual annotation, it is often only feasible to ascertain for a small subset the current status of the disease by a follow up time rather than the exact time. In this paper, we aim to develop risk prediction models for the onset time efficiently leveraging both a small number of labels on current status and a large number of unlabeled observations on imperfect proxies. Under a semiparametric transformation model for onset and a highly flexible measurement error models for proxy onset time, we propose the semisupervised risk prediction method by combining information from proxies and limited labels efficiently. From an initial estimator solely based on the labelled subset, we perform a one-step correction with the full data augmenting against a mean zero rank correlation score derived from the proxies. We establish the consistency and asymptotic normality of the proposed semi-supervised estimator and provide a resampling procedure for interval estimation. Simulation studies demonstrate that the proposed estimator performs well in finite sample. We illustrate the proposed estimator by developing a genetic risk prediction model for obesity using data from Partners Biobank Electronic Health Records (EHR).



rate research

Read More

Computational prediction of in-hospital mortality in the setting of an intensive care unit can help clinical practitioners to guide care and make early decisions for interventions. As clinical data are complex and varied in their structure and components, continued innovation of modeling strategies is required to identify architectures that can best model outcomes. In this work, we train a Heterogeneous Graph Model (HGM) on Electronic Health Record data and use the resulting embedding vector as additional information added to a Convolutional Neural Network (CNN) model for predicting in-hospital mortality. We show that the additional information provided by including time as a vector in the embedding captures the relationships between medical concepts, lab tests, and diagnoses, which enhances predictive performance. We find that adding HGM to a CNN model increases the mortality prediction accuracy up to 4%. This framework serves as a foundation for future experiments involving different EHR data types on important healthcare prediction tasks.
Although increasingly used as a data resource for assembling cohorts, electronic health records (EHRs) pose many analytic challenges. In particular, a patients health status influences when and what data are recorded, generating sampling bias in the collected data. In this paper, we consider recurrent event analysis using EHR data. Conventional regression methods for event risk analysis usually require the values of covariates to be observed throughout the follow-up period. In EHR databases, time-dependent covariates are intermittently measured during clinical visits, and the timing of these visits is informative in the sense that it depends on the disease course. Simple methods, such as the last-observation-carried-forward approach, can lead to biased estimation. On the other hand, complex joint models require additional assumptions on the covariate process and cannot be easily extended to handle multiple longitudinal predictors. By incorporating sampling weights derived from estimating the observation time process, we develop a novel estimation procedure based on inverse-rate-weighting and kernel-smoothing for the semiparametric proportional rate model of recurrent events. The proposed methods do not require model specifications for the covariate processes and can easily handle multiple time-dependent covariates. Our methods are applied to a kidney transplant study for illustration.
In electronic health records (EHRs), latent subgroups of patients may exhibit distinctive patterning in their longitudinal health trajectories. For such data, growth mixture models (GMMs) enable classifying patients into different latent classes based on individual trajectories and hypothesized risk factors. However, the application of GMMs is hindered by the special missing data problem in EHRs, which manifests two patient-led missing data processes: the visit process and the response process for an EHR variable conditional on a patient visiting the clinic. If either process is associated with the process generating the longitudinal outcomes, then valid inferences require accounting for a nonignorable missing data mechanism. We propose a Bayesian shared parameter model that links GMMs of multiple longitudinal health outcomes, the visit process, and the response process of each outcome given a visit using a discrete latent class variable. Our focus is on multiple longitudinal health outcomes for which there can be a clinically prescribed visit schedule. We demonstrate our model in EHR measurements on early childhood weight and height z-scores. Using data simulations, we illustrate the statistical properties of our method with respect to subgroup-specific or marginal inferences. We built the R package EHRMiss for model fitting, selection, and checking.
Identifying patients who will be discharged within 24 hours can improve hospital resource management and quality of care. We studied this problem using eight years of Electronic Health Records (EHR) data from Stanford Hospital. We fit models to predict 24 hour discharge across the entire inpatient population. The best performing models achieved an area under the receiver-operator characteristic curve (AUROC) of 0.85 and an AUPRC of 0.53 on a held out test set. This model was also well calibrated. Finally, we analyzed the utility of this model in a decision theoretic framework to identify regions of ROC space in which using the model increases expected utility compared to the trivial always negative or always positive classifiers.
Today, despite decades of developments in medicine and the growing interest in precision healthcare, vast majority of diagnoses happen once patients begin to show noticeable signs of illness. Early indication and detection of diseases, however, can provide patients and carers with the chance of early intervention, better disease management, and efficient allocation of healthcare resources. The latest developments in machine learning (more specifically, deep learning) provides a great opportunity to address this unmet need. In this study, we introduce BEHRT: A deep neural sequence transduction model for EHR (electronic health records), capable of multitask prediction and disease trajectory mapping. When trained and evaluated on the data from nearly 1.6 million individuals, BEHRT shows a striking absolute improvement of 8.0-10.8%, in terms of Average Precision Score, compared to the existing state-of-the-art deep EHR models (in terms of average precision, when predicting for the onset of 301 conditions). In addition to its superior prediction power, BEHRT provides a personalised view of disease trajectories through its attention mechanism; its flexible architecture enables it to incorporate multiple heterogeneous concepts (e.g., diagnosis, medication, measurements, and more) to improve the accuracy of its predictions; and its (pre-)training results in disease and patient representations that can help us get a step closer to interpretable predictions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا