Do you want to publish a course? Click here

DINA: Estimating Heterogenous Treatment Effects in Exponential Family and Cox Models

64   0   0.0 ( 0 )
 Added by Zijun Gao
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We propose to use the difference in natural parameters (DINA) to quantify the heterogeneous treatment effect for exponential family models, in contrast to the difference in means. Similarly we model the hazard ratios for the Cox model. For binary outcomes and survival times, DINA is both convenient and perhaps more practical for modeling the covariates influences on the treatment effect. We introduce a DINA estimator that is insensitive to confounding and non-collapsibility issues, and allows practitioners to use powerful off-the-shelf machine learning tools for nuisance estimation. We use extensive simulations to demonstrate the efficacy of the proposed method with various response distributions and censoring mechanisms. We also apply the proposed method to the SPRINT dataset to estimate the heterogeneous treatment effect, demonstrate the methods robustness to nuisance estimation, and conduct a placebo evaluation.



rate research

Read More

Exponential-family random graph models (ERGMs) provide a principled way to model and simulate features common in human social networks, such as propensities for homophily and friend-of-a-friend triad closure. We show that, without adjustment, ERGMs preserve density as network size increases. Density invariance is often not appropriate for social networks. We suggest a simple modification based on an offset which instead preserves the mean degree and accommodates changes in network composition asymptotically. We demonstrate that this approach allows ERGMs to be applied to the important situation of egocentrically sampled data. We analyze data from the National Health and Social Life Survey (NHSLS).
Support vector machine (SVM) is one of the most popular classification algorithms in the machine learning literature. We demonstrate that SVM can be used to balance covariates and estimate average causal effects under the unconfoundedness assumption. Specifically, we adapt the SVM classifier as a kernel-based weighting procedure that minimizes the maximum mean discrepancy between the treatment and control groups while simultaneously maximizing effective sample size. We also show that SVM is a continuous relaxation of the quadratic integer program for computing the largest balanced subset, establishing its direct relation to the cardinality matching method. Another important feature of SVM is that the regularization parameter controls the trade-off between covariate balance and effective sample size. As a result, the existing SVM path algorithm can be used to compute the balance-sample size frontier. We characterize the bias of causal effect estimation arising from this trade-off, connecting the proposed SVM procedure to the existing kernel balancing methods. Finally, we conduct simulation and empirical studies to evaluate the performance of the proposed methodology and find that SVM is competitive with the state-of-the-art covariate balancing methods.
Exponential-family random graph models (ERGMs) provide a principled and flexible way to model and simulate features common in social networks, such as propensities for homophily, mutuality, and friend-of-a-friend triad closure, through choice of model terms (sufficient statistics). However, those ERGMs modeling the more complex features have, to date, been limited to binary data: presence or absence of ties. Thus, analysis of valued networks, such as those where counts, measurements, or ranks are observed, has necessitated dichotomizing them, losing information and introducing biases. In this work, we generalize ERGMs to valued networks. Focusing on modeling counts, we formulate an ERGM for networks whose ties are counts and discuss issues that arise when moving beyond the binary case. We introduce model terms that generalize and model common social network features for such data and apply these methods to a network dataset whose values are counts of interactions.
Rank-order relational data, in which each actor ranks the others according to some criterion, often arise from sociometric measurements of judgment (e.g., self-reported interpersonal interaction) or preference (e.g., relative liking). We propose a class of exponential-family models for rank-order relational data and derive a new class of sufficient statistics for such data, which assume no more than within-subject ordinal properties. Application of MCMC MLE to this family allows us to estimate effects for a variety of plausible mechanisms governing rank structure in cross-sectional context, and to model the evolution of such structures over time. We apply this framework to model the evolution of relative liking judgments in an acquaintance process, and to model recall of relative volume of interpersonal interaction among members of a technology education program.
72 - Baisen Liu , Jiguo Cao 2016
The functional linear model is a popular tool to investigate the relationship between a scalar/functional response variable and a scalar/functional covariate. We generalize this model to a functional linear mixed-effects model when repeated measurements are available on multiple subjects. Each subject has an individual intercept and slope function, while shares common population intercept and slope function. This model is flexible in the sense of allowing the slope random effects to change with the time. We propose a penalized spline smoothing method to estimate the population and random slope functions. A REML-based EM algorithm is developed to estimate the variance parameters for the random effects and the data noise. Simulation studies show that our estimation method provides an accurate estimate for the functional linear mixed-effects model with the finite samples. The functional linear mixed-effects model is demonstrated by investigating the effect of the 24-hour nitrogen dioxide on the daily maximum ozone concentrations and also studying the effect of the daily temperature on the annual precipitation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا