Bayesian Doubly Robust Causal Inference via Loss Functions


Abstract in English

Frequentist inference has a well-established supporting theory for doubly robust causal inference based on the potential outcomes framework, which is realized via outcome regression (OR) and propensity score (PS) models. The Bayesian counterpart, however, is not obvious as the PS model loses its balancing property in joint modeling. In this paper, we propose a natural and formal Bayesian solution by bridging loss-type Bayesian inference with a utility function derived from the notion of a pseudo-population via the change of measure. Consistency of the posterior distribution is shown with correctly specified and misspecified OR models. Simulation studies suggest that our proposed method can estimate the true causal effect more efficiently and achieve the frequentist coverage if either the OR model is correctly specified or fit with a flexible function of the confounders, compared to the previous Bayesian approach via the Bayesian bootstrap. Finally, we apply this novel Bayesian method to assess the impact of speed cameras on the reduction of car collisions in England.

Download